首页> 外文OA文献 >A fully Sinc-Galerkin method for Euler-Bernoulli beam models
【2h】

A fully Sinc-Galerkin method for Euler-Bernoulli beam models

机译:Euler-Bernoulli光束模型的完全Sinc-Galerkin方法

摘要

A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-dependent partial differential equations with fixed and cantilever boundary conditions. The Sinc discretizations for the second-order temporal problem and the fourth-order spatial problems are presented. Alternate formulations for variable parameter fourth-order problems are given which prove to be especially useful when applying the forward techniques to parameter recovery problems. The discrete system which corresponds to the time-dependent partial differential equations of interest are then formulated. Computational issues are discussed and a robust and efficient algorithm for solving the resulting matrix system is outlined. Numerical results which highlight the method are given for problems with both analytic and singular solutions as well as fixed and cantilever boundary conditions.
机译:针对具有固定和悬臂边界条件的四阶时间相关的偏微分方程,提出了一种在空间和时间上都完全为Sinc-Galerkin的方法。给出了针对二阶时间问题和四阶空间问题的辛克离散化。给出了可变参数四阶问题的替代公式,这些公式被证明在将正向技术应用于参数恢复问题时特别有用。然后制定与时间相关的偏微分方程相对应的离散系统。讨论了计算问题,并概述了用于解决所得矩阵系统的鲁棒高效算法。对于解析和奇异解以及固定和悬臂边界条件问题,均给出了突出该方法的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号