首页> 外文OA文献 >Application of two-point difference schemes to the conservative Euler equations for one-dimensional flows
【2h】

Application of two-point difference schemes to the conservative Euler equations for one-dimensional flows

机译:两点差分格式在一维流保守Euler方程中的应用

摘要

An implicit finite difference method is presented for obtaining steady state solutions to the time dependent, conservative Euler equations for flows containing shocks. The method used the two-point differencing approach of Keller with dissipation added at supersonic points via the retarded density concept. Application of the method to the one-dimensional nozzle flow equations for various combinations of subsonic and supersonic boundary conditions shows the method to be very efficient. Residuals are typically reduced to machine zero in approximately 35 time steps for 50 mesh points. It is shown that the scheme offers certain advantages over the more widely used three-point schemes, especially in regard to application of boundary conditions.
机译:提出了一种隐式有限差分方法,用于获得含冲击流的时间相关的保守Euler方程的稳态解。该方法使用了Keller的两点微分方法,并通过延迟密度概念在超音速点处增加了耗散。对于亚音速和超音速边界条件的各种组合,该方法在一维喷嘴流量方程中的应用表明该方法非常有效。通常,对于50个网格点,将以大约35个时间步将残差减少为零。结果表明,与更广泛使用的三点方案相比,该方案具有某些优势,尤其是在边界条件的应用方面。

著录项

  • 作者

    Wornom S. F.;

  • 作者单位
  • 年度 1982
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号