首页> 外文OA文献 >The alpha Centauri Line of Sight: D/H Ratio, Physical Properties of Local Interstellar Gas, and Measurement of Heated Hydrogen (The 'Hydrogen Wall') Near the Heliopause
【2h】

The alpha Centauri Line of Sight: D/H Ratio, Physical Properties of Local Interstellar Gas, and Measurement of Heated Hydrogen (The 'Hydrogen Wall') Near the Heliopause

机译:半人马座阿尔法视线:D / H比,星际气体的物理性质以及在绝经期附近测量加热的氢(“氢壁”)

摘要

We analyze high-resolution spectra of the nearby (1.34 pc) stars alpha Cen A (G2 V) and alpha Cen B (K1 V), which were obtained with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. The observations consist of echelle spectra of the Mg II 2800 A and Fe II 2599 A resonance lines and the Lyman-alpha lines of hydrogen and deuterium. The interstellar gas has a velocity (v = - 18.0 +/- 0.2 km/s) consistent with the local flow vector proposed for this line of sight by Lailement & Berlin (1992). The temperature and nonthermal velocity inferred from the Fe II, Mg II, and D I line profiles are T = 5400 +/- 500 K and xi = 1.20 +/- 0.25 km/s, respectively. However, single-component fits to the H I Lyman-alpha lines yield a Doppler parameter (b(sub HI) = 11.80 km/s) that implies a significantly warmer temperature of 8350 K, and the velocity of the H I absorption (v = - 15.8 +/- 0.2 km/s) is redshifted by about 2.2 km/s with respect to the Fe II, Mg II, and D I lines. The one-component model of the interstellar gas suggests natural logarithm N base HI = 18.03 +/- 0.01 and D/H = (5.7 +/- 0.2) x 10(exp -6) . These parameters lead to a good fit to the observed spectra, but this model does not explain the higher temperature and redshift of H I relative to the other interstellar lines. The most sensible way to resolve the discrepancy between H(I) and the other lines is to add a second absorption component to the H(I) lines. This second component is hotter (T approx. equals 30,000 K), is redshifted relative to the primary component by 2-4 km/s, and has a column density too low to be detected in the Fe(II), Mg(II), and D(I) lines. We propose that the gas responsible for this component is located near the heliopause, consisting of the heated H I gas from the interstellar medium that is compressed by the solar wind. This so-called 'hydrogen wall' is predicted by recent multifluid gasdynamical models of the interstellar gas and solar wind interaction. Our data provide the first measurements of the temperature and column density of H(I) in the hydrogen wall. After considering the effects that a corresponding hydrogen wall around alpha Cen would have on our analysis, our best estimates for the parameters of the solar hydrogen wall are natural log N(sup (2))(H(I)) = 14.74 +/- 0.24, b(sup (2))(H(I)) = 21.9 +/- 1.7 km/s (corresponding to T = 29,000 +/- 5000 K), and v(sup (2))(H(I)) greater than -16km/s. Unfortunately, the existence of this heated H(I) reduces our ability to compute the H(I) column density of the interstellar medium accurately because, with slight alterations to our assumed stellar Lyman-alpha profiles, we discovered that acceptable two-component fits also exist with natural log N(H(I))approx. 17.6. We, therefore, quote large error bars for the H I column density along the alpha Cen line of sight, natural log N(H(I)) = 17.80 +/- 0.30. For this range in N(H(I)), n(H(I)) = 0.15 /cu.cm (+/- a factor of 2) and D/H = (0.5-1.9) x 10(exp -5). This is the first direct measurement of the H(I) density in a local cloud and allows us to predict the distance from the Sun to the edge of the local cloud along various lines of sight. This range in D/H is consistent with the value D/H = 1.6 x 10(exp -5) previously derived for the Capella and Procyon lines of sight. We cannot tell whether D/H ratio varies or is constant in the local interstellar medium, but we do find that the D(I)/Mg(II) ratio for the alpha Cen line of sight is about 4 times smaller than for the Capella and Procyon lines of sight. Therefore, either D/H or the Mg depletion varies significantly over distance scales of only a few parsecs.
机译:我们分析了附近(1.34 pc)星αCen A(G2 V)和αCen B(K1 V)的高分辨率光谱,这些光谱是通过哈勃太空望远镜上的戈达德高分辨率光谱仪获得的。观察结果由Mg II 2800 A和Fe II 2599 A共振线以及氢和氘的Lyman-alpha线的阶梯光谱组成。星际气体的速度(v =-18.0 +/- 0.2 km / s)与Lailement&Berlin(1992)为该视线建议的局部流动矢量一致。从Fe II,Mg II和D I线剖面推断出的温度和非热速度分别为T = 5400 +/- 500 K和xi = 1.20 +/- 0.25 km / s。但是,与HI Lyman-alpha线拟合的单分量会产生多普勒参数(b(sub HI)= 11.80 km / s),这意味着温度明显升高,为8350 K,并且HI吸收的速度(v =-相对于Fe II,Mg II和DI线,以15.2 +/- 0.2 km / s的速度红移了约2.2 km / s。星际气体的单组分模型表明自然对数N base HI = 18.03 +/- 0.01和D / H =(5.7 +/- 0.2)x 10(exp -6)。这些参数导致与观测到的光谱非常吻合,但是该模型不能解释相对于其他星际线的较高温度和H I的红移。解决H(I)与其他线之间差异的最明智的方法是在H(I)线中添加第二个吸收分量。第二个成分更热(T约等于30,000 K),相对于主要成分红移2-4 km / s,并且柱密度太低而无法在Fe(II),Mg(II)中检测到和D(I)线。我们建议负责该成分的气体位于更年期附近,该气体由来自星际介质的加热的H I气体组成,该气体被太阳风压缩。最近的星际气体和太阳风相互作用的多流体气体动力学模型预测了这种所谓的“氢壁”。我们的数据提供了氢壁中H(I)的温度和柱密度的首次测量。考虑到围绕Al Cen的相应氢壁会对我们的分析产生影响后,我们对太阳氢壁参数的最佳估计为自然对数N(sup(2))(H(I))= 14.74 +/- 0.24,b(sup(2))(H(I))= 21.9 +/- 1.7 km / s(对应于T = 29,000 +/- 5000 K),v(sup(2))(H(I) )大于-16km / s。不幸的是,这种加热的H(I)的存在降低了我们准确计算星际介质的H(I)列密度的能力,因为对我们假定的恒星Lyman-alpha轮廓进行了微小改动,我们发现可接受的两分量拟合也存在自然对数N(H(I))约。 17.6。因此,我们引用沿Al Cen视线的H I列密度的大误差线,自然对数N(H(I))= 17.80 +/- 0.30。对于N(H(I))中的此范围,n(H(I))= 0.15 /cu.cm(+/- 2的倍数)和D / H =(0.5-1.9)x 10(exp -5 )。这是对本地云中H(I)密度的首次直接测量,它使我们能够沿着各种视线预测从太阳到本地云边缘的距离。 D / H的此范围与先前为Capella和Procyon视线得出的D / H = 1.6 x 10(exp -5)值一致。我们无法确定D / H比在本地星际介质中是变化还是恒定,但是我们确实发现,αCen视线的D(I)/ Mg(II)比大约是Capella小4倍。和Procyon的视线。因此,D / H或Mg的消耗量仅在几微秒的距离范围内变化很大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号