首页> 外文OA文献 >Boundary conditions for the numerical solution of elliptic equations in exterior regions
【2h】

Boundary conditions for the numerical solution of elliptic equations in exterior regions

机译:外部区域椭圆方程数值解的边界条件

摘要

Elliptic equations in exterior regions frequently require a boundary condition at infinity to ensure the well-posedness of the problem. Examples of practical applications include the Helmholtz equation and Laplace's equation. Computational procedures based on a direct discretization of the elliptic problem require the replacement of the condition on a finite artificial surface. Direct imposition of the condition at infinity along the finite boundary results in large errors. A sequence of boundary conditions is developed which provides increasingly accurate approximations to the problem in the infinite domain. Estimates of the error due to the finite boundary are obtained for several cases. Computations are presented which demonstrate the increased accuracy that can be obtained by the use of the higher order boundary conditions. The examples are based on a finite element formulation but finite difference methods can also be used.
机译:外部区域中的椭圆方程经常需要无穷大的边界条件,以确保问题的适定性。实际应用的例子包括亥姆霍兹方程和拉普拉斯方程。基于椭圆问题直接离散化的计算程序需要在有限的人造表面上替换条件。沿有限边界无穷大地直接施加条件会导致较大的误差。开发了一系列边界条件,它在无限域中提供了越来越精确的近似问题。在几种情况下,可以获得由于有限边界引起的误差的估计。提出了计算,这些计算证明了可以通过使用更高阶的边界条件来提高准确性。这些示例基于有限元公式,但是也可以使用有限差分法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号