首页> 外文OA文献 >Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces
【2h】

Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces

机译:Hilbert空间中代数Riccati方程的强收敛性和逼近解的收敛速度

摘要

The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
机译:考虑了希尔伯特空间上定义的线性时不变系统在无限时间间隔上的线性二次最优控制问题。最佳控制通过反馈形式给出,该积分取决于相关联代数Riccati方程(ARE)的解pi。使用Ritz型近似来获得ARE解的有限维近似的序列pi sup N。获得了表明pi sup N强烈收敛到pi的充分条件。在这种条件下,导出了一个公式,该公式可用于获得pi sup N到pi的收敛速度。证明了Galerkin近似的结果,并将其应用于抛物线系统和遗传近似系统的平均近似。

著录项

  • 作者

    Ito Kazufumi;

  • 作者单位
  • 年度 1987
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号