首页> 外文OA文献 >A nonrecursive order N preconditioned conjugate gradient: Range space formulation of MDOF dynamics
【2h】

A nonrecursive order N preconditioned conjugate gradient: Range space formulation of MDOF dynamics

机译:非递归阶数N预处理共轭梯度:MDOF动力学的距离空间公式

摘要

While excellent progress has been made in deriving algorithms that are efficient for certain combinations of system topologies and concurrent multiprocessing hardware, several issues must be resolved to incorporate transient simulation in the control design process for large space structures. Specifically, strategies must be developed that are applicable to systems with numerous degrees of freedom. In addition, the algorithms must have a growth potential in that they must also be amenable to implementation on forthcoming parallel system architectures. For mechanical system simulation, this fact implies that algorithms are required that induce parallelism on a fine scale, suitable for the emerging class of highly parallel processors; and transient simulation methods must be automatically load balancing for a wider collection of system topologies and hardware configurations. These problems are addressed by employing a combination range space/preconditioned conjugate gradient formulation of multi-degree-of-freedom dynamics. The method described has several advantages. In a sequential computing environment, the method has the features that: by employing regular ordering of the system connectivity graph, an extremely efficient preconditioner can be derived from the 'range space metric', as opposed to the system coefficient matrix; because of the effectiveness of the preconditioner, preliminary studies indicate that the method can achieve performance rates that depend linearly upon the number of substructures, hence the title 'Order N'; and the method is non-assembling. Furthermore, the approach is promising as a potential parallel processing algorithm in that the method exhibits a fine parallel granularity suitable for a wide collection of combinations of physical system topologies/computer architectures; and the method is easily load balanced among processors, and does not rely upon system topology to induce parallelism.
机译:尽管在推导对系统拓扑和并发多处理硬件的某些组合有效的算法方面已取得了卓越的进展,但必须解决几个问题才能将瞬态仿真纳入大型空间结构的控制设计过程中。具体来说,必须制定适用于具有众多自由度的系统的策略。另外,这些算法必须具有增长潜力,因为它们还必须适合在即将到来的并行系统体系结构上实施。对于机械系统仿真,这一事实意味着需要一种算法,以在小规模上引起并行性,适用于新兴的高度并行处理器。瞬态仿真方法必须自动实现负载平衡,以收集更多的系统拓扑和硬件配置。这些问题通过采用多自由度动力学的组合范围空间/预处理共轭梯度公式解决。所描述的方法具有多个优点。在顺序计算环境中,该方法具有以下特征:通过采用系统连接图的规则排序,与系统系数矩阵相反,可以从“范围空间度量”中得出一种非常有效的预处理器;由于预处理器的有效性,初步研究表明,该方法可获得的性能速率与子结构的数量线性相关,因此,标题为“ N阶”。并且该方法是非组装的。此外,该方法有望作为一种潜在的并行处理算法,因为该方法展现出适用于物理系统拓扑/计算机体系结构组合的广泛集合的良好并行粒度。该方法易于在处理器之间实现负载均衡,并且不依赖于系统拓扑来诱发并行性。

著录项

  • 作者

    Kurdila Andrew J.;

  • 作者单位
  • 年度 1991
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号