首页> 外文OA文献 >NASA Advanced Explorations Systems: Advancements in Life Support Systems
【2h】

NASA Advanced Explorations Systems: Advancements in Life Support Systems

机译:NASA高级探索系统:生命支持系统的进步

摘要

The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies rely largely on sending environmental samples back to Earth. The LSS project is developing onboard analysis capabilities that will replace the need to return air and water samples from space for ground analysis. Air Revitalization- The air revitalization task is comprised of work in carbon dioxide removal, oxygen generation and recovery and trace contamination and particulate control. The CO2 Removal and associated air drying development efforts under the LSS project are focused both on improving the current SOA technology on the ISS and assessing and examining the viability of other sorbents and technologies available in academia and industry. The Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an effort to supply O2 to the crew at the required conditions, to recover O2 from metabolic CO2, and to recycle recovered O2 back to the cabin environment. Current state-of-the-art oxygen generation systems aboard space station are capable of generating or recovering approximately 40% of required oxygen; for exploration missions this percentage needs to be greatly increased. A spacecraft cabin trace contaminant and particulate control system serves to keep the environment below the spacecraft maximum allowable concentration (SMAC) for chemicals and particulates. Both passive (filters) and active (scrubbers) methods contribute to the overall TC & PC design. Work in the area of trace contamination and particulate control under the LSS project is focused on making improvements to the SOA TC & PC systems on ISS to improve performance and reduce consumables. Wastewater Processing and Water Management- A major goal of the LSS project is the development of water recovery systems to support long duration human exploration beyond LEO. Current space station wastewater processing and water management systems distill urine and wastewater to recover water from urine and humidity condensate in the spacecraft at a approximately 74% recovery rate. For longer, farther missions into deep space, that recovery rate must be greatly increased so that astronauts can journey for months without resupply cargo ships from Earth.
机译:NASA高级探索系统(AES)生命支持系统(LSS)项目致力于开发可靠,节能且低质量的航天器系统,以提供环境控制和生命支持系统(ECLSS),这对于实现长期的低空人类飞行任务至关重要地球轨道(LEO)。 NASA的可居住性架构团队(HAT)评估了较长时间的人类太空探索任务所需的能力,其中包括高度可靠的闭环生命支持系统。 LSS项目集中在四个领域:生命支持系统的体系结构和系统工程,环境监测,空气再生以及废水处理和水管理。从国际空间站(ISS)LSS系统作为出发点(如果适用)开始,LSS项目的任务有以下三个方面:1.解决离散的LSS技术差距2.提高LSS系统的可靠性3.进步LSS系统将在ISS上进行集成测试。本文总结了在上述四个领域中为实现这些目标所做的工作。将在以下重点领域提供详细信息:系统工程和体系结构-拥有如此众多的复杂系统,其中包括太空生命支持,重要的是要了解总体系统要求,以便为不同的太空任务类别定义生命支持系统架构,并确保所有这些组件可以很好地集成在一起,并确保测试尽可能代表目标环境。环境监测-在封闭的航天器中,该航天器不断运行复杂的机械以实现其自身的基本功能以及进行科学实验和技术演示,从而有可能破坏环境。尽管国际空间站上的当前环境监测器会在紧急情况下提醒机组人员和任务控制,但由于当前的方法学主要依赖于将环境样本送回地球,因此无法在轨进行长期环境监测。 LSS项目正在开发机载分析功能,它将取代从太空返回空气和水样本进行地面分析的需求。空气再生-空气再生的工作包括二氧化碳的去除,氧气的产生和回收以及痕量污染和颗粒物的控制。 LSS项目下的二氧化碳去除和相关的空气干燥开发工作既专注于改进国际空间站上的当前SOA技术,又评估和检查学术界和工业界可用的其他吸附剂和技术的可行性。氧气产生和回收技术的开发领域包括几个子任务,以在所需条件下向机组提供氧气,从代谢二氧化碳中回收氧气,并将回收的氧气循环回到机舱环境。当前空间站上最先进的氧气产生系统能够产生或回收大约40%的所需氧气;对于勘探任务,此百分比需要大大提高。航天器机舱痕量污染物和微粒控制系统用于将环境保持在航天器中化学物质和微粒的最大允许浓度(SMAC)以下。被动(过滤器)和主动(洗涤器)方法都有助于整体TC和PC设计。 LSS项目下的痕量污染和颗粒物控制领域的工作重点在于改进ISS上的SOA TC和PC系统,以提高性能并减少消耗品。废水处理和水管理-LSS项目的主要目标是开发水回收系统,以支持LEO以外的长期人类勘探。当前的空间站废水处理和水管理系统会蒸馏尿液和废水,以大约74%的回收率从航天器中的尿液和湿气冷凝物中回收水。对于更长的,更深的进入深空的任务,必须大大提高恢复率,以便宇航员可以连续航行数月而无需从地球上重新提供货船。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号