首页> 外文OA文献 >Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments
【2h】

Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

机译:基于实验设计的边界层入口偏置入口被动流量控制的优化设计

摘要

This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan-face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan-face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3- Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCP(sub avg), the circumferential distortion level at the engine fan-face.
机译:这项研究将研究实验设计(DOE)在跨音速流中边界层摄食(BLI)偏移入口的最佳无源流量控制叶片设计开发中的应用。此进气流量控制旨在最大程度地降低进气压力恢复的同时,最大程度地减小发动机风扇表面的变形程度和前五个傅里叶谐波半振幅。使用美国国家航空航天局(NASA)开发的雷诺平均Navier-Stokes(RANS)流量求解器OVERFLOW计算BLI入口的数值模拟。这些模拟用于生成DOE响应面模型的数值实验。在这项研究中,使用D-Optimal Response Surface模型执行了两个DOE优化。使用四个设计因子(两组叶片的叶片高度和攻角)进行首次DOE优化。一组叶片放置在入口的底部,另一组叶片对称地放置在侧面。针对自由流马赫数为0.85,雷诺数为200万的BLI进气口进行了DOE设计,基于风扇面直径的长度,与实验风洞BLI进气口测试相匹配。首次DOE优化需要具有173个数值模拟实验的五阶模型,并且能够将DC60基线失真从64%降低到4.4%,同时保持压力恢复常数。执行第二次DOE优化,以两个叶片攻角作为设计因素,将叶片高度与第一次DOE优化保持恒定值。该DOE只需要一个经过15次数值模拟实验的二阶模型,就可以将DC60减小到3.5%,而第四和第五谐波幅度的减小很小。在BLI入口实验中,第二个最佳叶片设计在NASA Langley 0.3米跨音速低温隧道中进行了测试。实验结果表明,DPCP(sub avg)降低了80%,这是发动机风扇表面的圆周变形水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号