首页> 外文OA文献 >Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics
【2h】

Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics

机译:致力于提高强度和鲁棒性的火箭发动机组件

摘要

High-energy rotating machines, powering liquid propellant rocket engines, are subject to various sources of high and low cycle fatigue generated by unsteady flow phenomena. Given the tremendous need for reliability in a sustainable space exploration program, a fundamental change in the design methodology for engine components is required for both launch and space based systems. A design optimization system based on neural-networks has been applied and demonstrated in the redesign of the Space Shuttle Main Engine (SSME) Low Pressure Oxidizer Turbo Pump (LPOTP) turbine nozzle. One objective of the redesign effort was to increase airfoil thickness and thus increase its strength while at the same time detuning the vane natural frequency modes from the vortex shedding frequency. The second objective was to reduce the vortex shedding amplitude. The third objective was to maintain this low shedding amplitude even in the presence of large manufacturing tolerances. All of these objectives were achieved without generating any detrimental effects on the downstream flow through the turbine, and without introducing any penalty in performance. The airfoil redesign and preliminary assessment was performed in the Exploration Technology Directorate at NASA ARC. Boeing/Rocketdyne and NASA MSFC independently performed final CFD assessments of the design. Four different CFD codes were used in this process. They include WIL DCA T/CORSAIR (NASA), FLUENT (commercial), TIDAL (Boeing Rocketdyne) and, a new family (AardvarWPhantom) of CFD analysis codes developed at NASA MSFC employing LOX fluid properties and a Generalized Equation Set formulation. Extensive aerodynamic performance analysis and stress analysis carried out at Boeing Rocketdyne and NASA MSFC indicate that the redesign objectives have been fully met. The paper presents the results of the assessment analysis and discusses the future potential of robust optimal design for rocket engine components.
机译:为液体推进火箭发动机提供动力的高能旋转机容易受到不稳定流动现象产生的各种高,低周疲劳的影响。鉴于可持续太空探索计划对可靠性的巨大需求,发射和太空系统都需要对发动机组件的设计方法进行根本性的改变。基于神经网络的设计优化系统已被应用,并在航天飞机主机(SSME)低压氧化涡轮增压泵(LPOTP)涡轮喷嘴的重新设计中得到了证明。重新设计工作的一个目标是增加机翼厚度,从而增加其强度,同时使叶片固有频率模式与涡旋脱落频率失谐。第二个目的是减小涡旋脱落幅度。第三个目标是即使在较大的制造公差下也要保持这种较低的脱落幅度。实现了所有这些目标,而没有对通过涡轮的下游流量产生任何不利影响,并且没有对性能造成任何损失。机翼的重新设计和初步评估是在NASA ARC的勘探技术局进行的。波音/火箭公司和美国宇航局MSFC对设计进行了最终的CFD评估。在此过程中使用了四个不同的CFD代码。它们包括WIL DCA T / CORSAIR(NASA),FLUENT(商业),TIDAL(波音Rocketdyne),以及在NASA MSFC上使用LOX流体性质和通用方程组公式开发的CFD分析代码新系列(AardvarWPhantom)。波音Rocketdyne和NASA MSFC进行的广泛的空气动力学性能分析和应力分析表明,重新设计的目标已得到完全实现。本文介绍了评估分析的结果,并讨论了火箭发动机部件稳健优化设计的未来潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号