首页> 外文OA文献 >Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger with Bypass Setpoint Temperature Control
【2h】

Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger with Bypass Setpoint Temperature Control

机译:使用带有旁路设定点温度控制的蓄热式热交换器保护航天器的散热器防冻

摘要

Spacecraft radiators are sized for their maximum heat load in their warmest thermal environment, but must operate at reduced heat loads and in colder environments. For systems where the radiator environment can be colder than the working fluid freezing temperature, radiator freezing becomes an issue. Radiator freezing has not been a major issue for the Space Shuttle and the International Space Station (ISS) active thermal control systems (ATCSs) because they operate in environments that are warm relative to the freezing point of their external coolants (Freon-21 and ammonia, respectively). For a vehicle that lands at the Lunar South Pole, the design thermal environment is 215K, but the radiator working fluid must also be kept from freezing during the 0 K sink of transit. A radiator bypass flow control design such as those used on the Space Shuttle and ISS requires more than 30% of the design heat load to avoid radiator freezing during transit - even with a very low freezing point working fluid. By changing the traditional ATCS architecture to include a regenerating heat exchanger inboard of the radiator and by using a regenerator bypass flow control valve to maintain system setpoint, the required minimum heat load can be reduced by more than half. This gives the spacecraft much more flexibility in design and operation. The present work describes the regenerator bypass ATCS setpoint control methodology. It includes analytical results comparing the performance of this system to the traditional radiator bypass system. Finally, a summary of the advantages of the regenerator bypass system are presented.
机译:航天器散热器的尺寸设计为在最热的热环境中具有最大的热负荷,但必须在减少的热负荷和较冷的环境中运行。对于散热器环境可能比工作流体冻结温度低的系统,散热器冻结成为一个问题。对于航天飞机和国际空间站(ISS)主动热控制系统(ATCS)而言,散热器冻结并不是主要问题,因为它们在相对于其外部冷却剂(氟利昂21和氨)的凝固点而言较热的环境中运行, 分别)。对于着陆在月球南极的车辆,设计热环境为215K,但在0 K的水槽下,散热器的工作流体也必须保持冻结。散热器旁路流量控制设计(例如在航天飞机和ISS上使用的散热器)需要超过设计热负荷的30%,以避免散热器在运输过程中冻结-即使使用非常低的凝固点工作流体。通过更改传统的ATCS体系结构,使其在散热器内部包括一个再生热交换器,并通过使用再生器旁通流量控制阀来维持系统设定值,所需的最小热负荷可以减少一半以上。这使航天器在设计和操作上具有更大的灵活性。本工作描述了再生器旁路ATCS设定点控制方法。它包括将本系统与传统散热器旁路系统的性能进行比较的分析结果。最后,总结了再生器旁路系统的优点。

著录项

  • 作者

    Ungar Eugene K.;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号