首页> 外文OA文献 >Three-dimensional Finite Element Formulation and Scalable Domain Decomposition for High Fidelity Rotor Dynamic Analysis
【2h】

Three-dimensional Finite Element Formulation and Scalable Domain Decomposition for High Fidelity Rotor Dynamic Analysis

机译:高保真转子动力学分析的三维有限元公式化和可扩展域分解

摘要

This paper has two objectives. The first objective is to formulate a 3-dimensional Finite Element Model for the dynamic analysis of helicopter rotor blades. The second objective is to implement and analyze a dual-primal iterative substructuring based Krylov solver, that is parallel and scalable, for the solution of the 3-D FEM analysis. The numerical and parallel scalability of the solver is studied using two prototype problems - one for ideal hover (symmetric) and one for a transient forward flight (non-symmetric) - both carried out on up to 48 processors. In both hover and forward flight conditions, a perfect linear speed-up is observed, for a given problem size, up to the point of substructure optimality. Substructure optimality and the linear parallel speed-up range are both shown to depend on the problem size as well as on the selection of the coarse problem. With a larger problem size, linear speed-up is restored up to the new substructure optimality. The solver also scales with problem size - even though this conclusion is premature given the small prototype grids considered in this study.
机译:本文有两个目标。第一个目标是为直升机旋翼桨叶的动力学分析制定3维有限元模型。第二个目标是实现和分析基于双原始迭代子结构的Krylov求解器,该求解器并行且可扩展,用于3-D FEM分析的解决方案。使用两个原型问题研究了求解器的数值和并行可扩展性-一个用于理想悬停(对称),一个用于瞬态正向飞行(非对称)-都在多达48个处理器上进行。在悬停和前进飞行条件下,对于给定的问题大小,可以观察到理想的线性加速,直至达到子结构的最佳点。子结构的最优性和线性平行加速范围均显示为取决于问题的大小以及对粗略问题的选择。随着问题规模的增大,可以将线性加速恢复到新的子结构最优性。求解器还可以根据问题的大小进行缩放-即使考虑到本研究中考虑的小型原型网格,结论尚为时过早。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号