首页> 外文OA文献 >Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions
【2h】

Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

机译:核热推进(NTP):一种经过验证的人类NEO /火星探测任务增长技术

摘要

The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of ~900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program - the 25,000 lbf (25 klbf) "Pewee" engine is sufficient when used in a clustered engine arrangement. The "Copernicus" crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth object (NEO) and Mars orbital missions prior to a Mars landing mission. The paper also discusses NASA s current activities and future plans for NTP development that include system-level Technology Demonstrations - specifically ground testing a small, scalable NTR by 2020, with a flight test shortly thereafter.
机译:核热火箭(NTR)代表着高性能火箭推进的下一个“进化步骤”。与通过燃烧产生能量的常规化学火箭不同,NTR的能量来自包含在构成发动机反应堆核心的燃料元件中的铀235原子的裂变。使用“膨胀机”循环提供涡轮泵驱动功率,将氢推进剂提升至高压,并通过燃料元件中的冷却剂通道泵送,在此将其过热,然后通过超音速喷嘴膨胀以产生高推力。通过将氢气用作反应堆冷却剂和推进剂,NTR可以实现约900秒(s)或更长的比冲(Isp)值-是当今最好的化学火箭的两倍。从1955年到1972年,在Rover和NERVA(火箭车辆应用核发动机)计划中设计,建造并进行了20个火箭反应堆的测试。这些方案证明:(1)高温碳化物基核燃料; (2)各种推力水平; (3)持续的发动机运转; (4)满功率累积寿命; (5)重新启动功能-人类火星任务所需的所有要求。陶瓷金属“金属陶瓷”燃料也作为备用选择。 NTR还具有显着的“进化和增长”能力。配置为“双峰”系统,它可以产生自己的电力来支持航天器的运行需求。添加氧气“加力燃烧器”喷嘴会引入可变的推力和Isp功能,并允许双推进剂运行。在NASA最近的火星设计参考体系结构(DRA)5.0研究中,由于其成熟的技术,更高的性能,更低的发射质量,多功能的车辆设计,简单的组装以及增长的潜力,NTR被选为首选的推进选择。与其他高级推进选项相比,NTP也不要求大规模扩大技术。实际上,在集束式发动机配置中使用时,在Rover程序中测试的最小发动机-25,000 lbf(25 klbf)“ Pewee”发动机就足够了。在DRA 5.0中开发的“哥白尼”载人航天器设计具有强大的能力,此处概述了一种人类探索策略,该策略将哥白尼及其关键成分用于火星着陆任务之前的近地天体(NEO)和火星轨道任务。本文还讨论了NASA当前的活动以及NTP开发的未来计划,其中包括系统级技术演示-特别是在2020年之前对小型,可扩展的NTR进行地面测试,并随后进行飞行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号