首页> 外文OA文献 >Communications Transceivers for Venus Surface Missions
【2h】

Communications Transceivers for Venus Surface Missions

机译:金星水面任务通信收发器

摘要

The high temperature of the surface of Venus poses many difficulties. Previous Venus landers have only operated for short durations before succumbing to the heat. NASA Glenn Research Center conducted a study on communications for long duration Venus surface missions. I report the findings in this presentation. Current technology allows production of communications transceivers that can operate on the surface of Venus, at temperatures above 450 C and pressures of over 90 atmospheres. While these transceivers would have to be relatively simple, without much of the advanced signal processing often used in modern transceivers, since current and near future integrated circuits cannot operate at such high temperatures, the transceivers will be able to meet the requirements of proposed Venus Surface mission. The communication bands of interest are High Frequency or Very High Frequency (HFNHF) for communication between Venus surface and airborne probes (including surface to surface and air to air), and Ultra High Frequency (UHF) to Microwave bands for communication to orbiters. For HFNHF, transceivers could use existing vacuum tube technology. The packaging of the vacuum tubes may need modification, but the internal operating structure already operates at high temperatures. Using metal vacuum structures instead of glass, allows operation at high pressure. Wide bandgap transistors and diodes may be able to replace some of the thermionic components. VHF communications would be useful for line-of- sight operations, while HF would be useful for short-wave type communications using the Venusian ionosphere. UHF and microwave communications use magnetically focused thermionic devices, such as traveling wave tubes (TWTs), magnetron (M-type) amplifiers, and klystrons for high power amplifiers, and backward wave oscillators (BWOs) and reflex klystrons for oscillators. Permanent magnets are already in use in industry that can operate at 500 C. These magnets could focus electron beam tubes on the surface of Venus. While microwave windows will need to be designed for the high pressure, diamond windows have already been demonstrated, so high-pressure microwave windows can be designed and built. Thus, all of these devices could be useful for Venus surface missions. Current electronic power conditioners to supply the high voltages used in these microwave devices cannot operate at high temperatures, but earlier electronic power conditioners that used vacuum tubes can be modified to work at high temperature. Evaluating the various devices in this study, the M-type traveling wave tube (where a traveling wave structure is used in a crossed-field device, similar to the Amplitron used on the Apollo missions) stood out for the high power amplifier since it requires a single high voltage, simplifying the power supply design. Since the receiver amplifier is a low power amplifier, the loss of efficiency in linear beam devices without a depressed collector (and thus needing a single high voltage) is not important; a low noise TWT is a possible solution. Before solid-state microwave amplifiers were available, such TWTs were built with a 1-2 dB noise figure. A microwave triode or transistor made from a wide bandgap material may be preferable, if available. Much of the development work needed for Venusian communication devices will need to focus on the packaging of the devices, and their connections, but the technology is available to build transceivers that can operate on the surface of Venus indefinitely.
机译:金星表面的高温带来许多困难。先前的维纳斯着陆器在遭受高温之前只运转了很短的时间。美国宇航局格伦研究中心进行了长期金星水面任务通信的研究。我在此演示文稿中报告调查结果。当前的技术允许生产可以在金星表面,温度超过450摄氏度,压力超过90个大气压下工作的通信收发器。尽管这些收发器必须相对简单,但没有现代收发器中经常使用的许多高级信号处理功能,但由于当前和不久的将来的集成电路无法在如此高的温度下运行,因此收发器将能够满足建议的Venus Surface的要求。任务。感兴趣的通信频段是用于金星表面与空气探测器(包括地对地和空对空)之间通信的高频或甚高频(HFNHF),以及用于与轨道器通信的超高频(UHF)到微波频段。对于HFNHF,收发器可以使用现有的真空管技术。真空管的包装可能需要修改,但是内部工作结构已经在高温下工作。使用金属真空结构代替玻璃,可以在高压下运行。宽带隙晶体管和二极管可能能够代替某些热电子元件。 VHF通信对于视线操作非常有用,而HF对使用金星电离层的短波类型通信非常有用。 UHF和微波通信使用磁性聚焦的热电子设备,例如行波管(TWT),磁控管(M型)放大器和用于大功率放大器的速调管,以及用于振荡器的后向波振荡器(BWO)和反射速调管。永久磁铁已经可以在500 C的温度下使用。这些磁铁可以将电子束管聚焦在金星表面。尽管需要为高压设计微波窗,但已经证明了金刚石窗,因此可以设计和建造高压微波窗。因此,所有这些设备对于金星水面任务可能都是有用的。当前的用于提供在这些微波设备中使用的高压的电子功率调节器不能在高温下运行,但是可以将使用真空管的早期电子功率调节器修改为在高温下工作。在评估本研究中的各种设备时,M型行波管(在交叉场设备中使用行波结构,类似于在Apollo任务中使用的Amplitron)在高功率放大器中脱颖而出。单个高压,简化了电源设计。由于接收放大器是一个低功率放大器,因此在没有集电极被压低(因此需要一个高电压)的线性波束设备中,效率的损失并不重要。低噪声的TWT是一种可能的解决方案。在固态微波放大器问世之前,这种TWT的噪声系数为1-2 dB。如果可用的话,由宽带隙材料制成的微波三极管或晶体管可能是优选的。金星通信设备所需的许多开发工作将需要集中在设备的包装及其连接上,但是该技术可用于构建可以无限期在金星表面运行的收发器。

著录项

  • 作者

    Force Dale A.;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号