首页> 外文OA文献 >Determination of Ground-Laboratory to In-Space Effective Atomic Oxygen Fluence for DC 93?500 Silicone
【2h】

Determination of Ground-Laboratory to In-Space Effective Atomic Oxygen Fluence for DC 93?500 Silicone

机译:DC 93?500硅树脂从地面实验室到太空中有效原子氧通量的测定

摘要

The objective of this research was to calibrate the ground-to-space effective atomic oxygen fluence for DC 93-500 silicone in a thermal energy electron cyclotron resonance (ECR) oxygen plasma facility. Silicones, commonly used spacecraft materials, do not chemically erode with atomic oxygen attack like other organic materials but form an oxidized hardened silicate surface layer. Therefore, the effective atomic oxygen fluence in a ground test facility should not be determined based on mass loss measurements, as they are with organic polymers. A technique has been developed at the Glenn Research Center to determine the equivalent amount of atomic oxygen exposure in an ECR ground test facility to produce the same degree of atomic oxygen damage as in space. The approach used was to compare changes in the surface hardness of ground test (ECR) exposed DC 93-500 silicone with DC 93-500 exposed to low Earth orbit (LEO) atomic oxygen as part of a shuttle flight experiment. The ground to in-space effective atomic oxygen fluence correlation was determined based on the fluence in the ECR source that produced the same hardness for the fluence in-space. Nanomechanical hardness versus contact depth measurements were obtained for five ECR exposed DC 93-500 samples (ECR exposed for 18 to 40 hrs, corresponding to Kapton effective fluences of 4.2 x 10(exp 20) to 9.4 x 10(exp 20) atoms/sq cm, respectively) and for space exposed DC 93-500 from the Evaluation of Oxygen Interactions with Materials III (EOIM III) shuttle flight experiment, exposed to LEO atomic oxygen for 2.3 x 10(exp 20) atoms/sq cm. Pristine controls were also evaluated. A ground-to-space correlation value was determined based on correlation values for four contact depths (150, 200, 250, and 300 nm), which represent the near surface depth data. The results indicate that the Kapton effective atomic oxygen fluence in the ECR facility needs to be 2.64 times higher than in LEO to replicate equivalent exposure damage in the ground test silicone as occurred in the space exposed silicone.
机译:这项研究的目的是在热能电子回旋共振(ECR)氧等离子体设备中校准DC 93-500硅树脂的地对空有效原子通量。常用的航天器材料有机硅不会像其他有机材料一样受到原子氧侵蚀的化学侵蚀,但会形成氧化的硬化硅酸盐表面层。因此,地面测试设施中的有效原子氧通量不应像有机聚合物那样基于质量损失测量值来确定。 Glenn研究中心已经开发出一种技术,可以确定ECR地面测试设施中原子氧暴露的等效量,以产生与太空相同程度的原子氧破坏。作为航天飞机飞行实验的一部分,使用的方法是比较暴露于DC 93-500的地面测试(ECR)有机硅和暴露于低地球轨道(LEO)原子氧的DC 93-500的表面硬度的变化,作为航天飞机飞行实验的一部分。基于ECR源中的能量密度确定了地面到空间的有效原子氧能量密度相关性,而ECR源中的能量密度对空间能量密度产生了相同的硬度。获得了五个暴露于ECR的DC 93-500样品(暴露于ECR的时间为18至40小时,对应于Kapton有效通量为4.2 x 10(exp 20)至9.4 x 10(exp 20)原子/平方)的纳米机械硬度与接触深度的关系。厘米)),以及通过与材料III(EOIM III)穿梭飞行实验进行的氧相互作用评估,暴露于DC 93-500的空间,暴露于LEO原子氧下为2.3 x 10(exp 20)原子/平方厘米。还评估了原始对照。基于代表近表面深度数据的四个接触深度(150、200、250和300 nm)的相关值,确定了地对空相关值。结果表明,在ECR设备中,Kapton有效原子氧通量需要比LEO高2.64倍,才能在地面测试有机硅中复制与在空间暴露有机硅中相同的暴露破坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号