首页> 外文OA文献 >Global Positioning System (GPS) Precipitable Water in Forecasting Lightning at Spaceport Canaveral
【2h】

Global Positioning System (GPS) Precipitable Water in Forecasting Lightning at Spaceport Canaveral

机译:全球定位系统(GPS)可降水量预报卡纳维拉尔太空港的闪电

摘要

This paper evaluates the use of precipitable water (PW) from Global Positioning System (GPS) in lightning prediction. Additional independent verification of an earlier model is performed. This earlier model used binary logistic regression with the following four predictor variables optimally selected from a candidate list of 23 candidate predictors: the current precipitable water value for a given time of the day, the change in GPS-PW over the past 9 hours, the KIndex, and the electric field mill value. This earlier model was not optimized for any specific forecast interval, but showed promise for 6 hour and 1.5 hour forecasts. Two new models were developed and verified. These new models were optimized for two operationally significant forecast intervals. The first model was optimized for the 0.5 hour lightning advisories issued by the 45th Weather Squadron. An additional 1.5 hours was allowed for sensor dwell, communication, calculation, analysis, and advisory decision by the forecaster. Therefore the 0.5 hour advisory model became a 2 hour forecast model for lightning within the 45th Weather Squadron advisory areas. The second model was optimized for major ground processing operations supported by the 45th Weather Squadron, which can require lightning forecasts with a lead-time of up to 7.5 hours. Using the same 1.5 lag as in the other new model, this became a 9 hour forecast model for lightning within 37 km (20 NM)) of the 45th Weather Squadron advisory areas. The two new models were built using binary logistic regression from a list of 26 candidate predictor variables: the current GPS-PW value, the change of GPS-PW over 0.5 hour increments from 0.5 to 12 hours, and the K-index. The new 2 hour model found the following for predictors to be statistically significant, listed in decreasing order of contribution to the forecast: the 0.5 hour change in GPS-PW, the 7.5 hour change in GPS-PW, the current GPS-PW value, and the KIndex. The new 9 hour forecast model found the following five independent variables to be statistically significant, listed in decreasing order of contribution to the forecast: the current GPSPW value, the 8.5 hour change in GPS-PW, the 3.5 hour change in GPS-PW, the 12 hour change in GPS-PW, and the K-Index. In both models, the GPS-PW parameters had better correlation to the lightning forecast than the K-Index, a widely used thunderstorm index. Possible future improvements to this study are discussed.
机译:本文评估了全球定位系统(GPS)中的可降水量(PW)在雷电预测中的使用。对早期模型进行附加的独立验证。这个较早的模型使用了二进制逻辑回归,并从23个候选预测变量的候选列表中最佳选择了以下四个预测变量:一天中给定时间的当前可降水量水值,过去9个小时中GPS-PW的变化, KIndex和电场磨值。此早期模型并未针对任何特定的预测间隔进行优化,但显示了6小时和1.5小时预测的希望。开发并验证了两个新模型。这些新模型针对两个重要的运营预测间隔进行了优化。第一个模型针对第45气象中队发布的0.5小时闪电咨询进行了优化。预报员还允许另外1.5个小时进行传感器停留,通信,计算,分析和咨询决策。因此,第0.5个小时的咨询模型成为第45气象中队咨询区域内2个小时的闪电预报模型。第二个模型针对由第45气象中队支持的主要地面处理操作进行了优化,这可能需要闪电预报,且交货时间最长为7.5小时。使用与其他新模型相同的1.5滞后,这成为第45气象中队咨询区域内37公里(20海里)内闪电的9小时预报模型。这两个新模型是使用二进制逻辑回归从26个候选预测变量列表中建立的:当前GPS-PW值,GPS-PW在0.5小时内从0.5到12小时的增量变化以及K指数。新的2小时模型发现以下预测变量具有统计学意义,并以对预测的贡献从小到大的顺序列出:GPS-PW变化0.5小时,GPS-PW变化7.5小时,当前GPS-PW值,和KIndex。新的9小时预报模型发现以下五个自变量具有统计学意义,并按对预测的贡献递减顺序列出:当前GPSPW值,GPS-PW的8.5小时变化,GPS-PW的3.5小时变化, GPS-PW和K-Index的12小时变化。在这两个模型中,GPS-PW参数与雷电预报的相关性都比广泛使用的雷暴指数K-Index更好。讨论了该研究可能的未来改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号