首页> 外文OA文献 >DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching
【2h】

DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching

机译:DBD等离子致动器,用于飞机和喷气发动机的流量控制-通过密度匹配模拟试验箱中的飞行条件

摘要

Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it has to be tested at 12.4 atm for takeoff, and 6 atm for cruise conditions. If it is to be placed at the low-pressure turbine, it has to be tested at 0.5 and 0.2 atm, respectively. These results have implications for the feasibility and design of DBD plasma actuators for jet engine flow control applications. In addition, the distributions of unit Reynolds number, Mach number, and velocity along the engine are provided. The engine models are non-proprietary and this information can be used for evaluation of other types of actuators and for other purposes.
机译:用于飞机和喷气发动机主动流量控制的介电阻挡放电(DBD)等离子执行器需要在实验室进行测试,以表征其在飞行操作条件下的性能。 DBD等离子体致动器通过产生弱离子化的等离子体,以电子方式产生壁喷,因此其性能会受到气体放电特性的影响,而气体放电特性又取决于致动器放置位置的压力和温度。执行器的表征最初是在没有外部流量的实验室室内进行的。致动器飞行操作条件下的压力和温度需要在腔室内同时设定。需要一种简化的方法。假定等离子体放电仅取决于气体密度,而其他温度影响则可忽略不计。因此,可以在室温下进行试验,并将腔室压力设置为产生与操作飞行条件相同的密度。示出了用于飞机的高度飞行以及在海平面起飞和高度巡航条件下的喷气发动机所需的腔室压力。大气飞行条件是根据有或没有冲击波的标准大气计算得出的。发动机数据是从四个通用发动机模型中获得的。 300、150和50座(PAX)飞机发动机,以及军用喷气战斗机发动机。针对海平面起飞和海拔巡航条件,计算了沿发动机的静态和总压力,温度和密度分布。计算了测试执行器所需的相应腔室压力。结果表明,为了在飞行条件下模拟发动机组件的流量,应在较宽的压力范围内对等离子执行器进行测试。对于四种型号的发动机,范围从12.4至0.03 atm,这取决于执行器在发动机中的位置。例如,如果要将DBD等离子致动器放置在300 PAX发动机的压缩机出口处,则必须在12.4 atm起飞和6 atm巡航条件下对其进行测试。如果要将其放置在低压涡轮机上,则必须分别在0.5 atm和0.2 atm下进行测试。这些结果对用于喷气发动机流量控制应用的DBD等离子致动器的可行性和设计具有影响。另外,提供了沿发动机的单位雷诺数,马赫数和速度的分布。发动机模型是非专有的,该信息可用于评估其他类型的执行器或用于其他目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号