首页> 外文OA文献 >Rotor Airloads Prediction Using Unstructured Meshes and Loose CFD/CSD Coupling
【2h】

Rotor Airloads Prediction Using Unstructured Meshes and Loose CFD/CSD Coupling

机译:基于非结构化网格和松散CFD / CSD耦合的转子空气载荷预测

摘要

The FUN3D unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been modified to allow prediction of trimmed rotorcraft airloads. The trim of the rotorcraft and the aeroelastic deformation of the rotor blades are accounted for via loose coupling with the CAMRAD II rotorcraft computational structural dynamics code. The set of codes is used to analyze the HART-II Baseline, Minimum Noise and Minimum Vibration test conditions. The loose coupling approach is found to be stable and convergent for the cases considered. Comparison of the resulting airloads and structural deformations with experimentally measured data is presented. The effect of grid resolution and temporal accuracy is examined. Rotorcraft airloads prediction presents a very substantial challenge for Computational Fluid Dynamics (CFD). Not only must the unsteady nature of the flow be accurately modeled, but since most rotorcraft blades are not structurally stiff, an accurate simulation must account for the blade structural dynamics. In addition, trim of the rotorcraft to desired thrust and moment targets depends on both aerodynamic loads and structural deformation, and vice versa. Further, interaction of the fuselage with the rotor flow field can be important, so that relative motion between the blades and the fuselage must be accommodated. Thus a complete simulation requires coupled aerodynamics, structures and trim, with the ability to model geometrically complex configurations. NASA has recently initiated a Subsonic Rotary Wing (SRW) Project under the overall Fundamental Aeronautics Program. Within the context of SRW are efforts aimed at furthering the state of the art of high-fidelity rotorcraft flow simulations, using both structured and unstructured meshes. Structured-mesh solvers have an advantage in computation speed, but even though remarkably complex configurations may be accommodated using the overset grid approach, generation of complex structured-mesh systems can require months to set up. As a result, many rotorcraft simulations using structured-grid CFD neglect the fuselage. On the other hand, unstructured-mesh solvers are easily able to handle complex geometries, but suffer from slower execution speed. However, advances in both computer hardware and CFD algorithms have made previously state-of-the-art computations routine for unstructured-mesh solvers, so that rotorcraft simulations using unstructured grids are now viable. The aim of the present work is to develop a first principles rotorcraft simulation tool based on an unstructured CFD solver.
机译:针对非结构化网格的FUN3D非稳态雷诺平均Navier-Stokes求解器已经过修改,可以预测旋翼飞机的修整空载。通过与CAMRAD II旋翼飞机的计算结构动力学代码之间的松散耦合,可以计算旋翼飞机的微调和旋翼的气动弹性变形。该组代码用于分析HART-II基准,最小噪声和最小振动测试条件。对于所考虑的情况,发现松散耦合方法是稳定且收敛的。给出了所得的空气载荷和结构变形与实验测量数据的比较。检查了网格分辨率和时间精度的影响。旋翼飞机的空载预测对计算流体动力学(CFD)提出了非常重大的挑战。不仅必须对流动的不稳定特性进行精确建模,而且由于大多数旋翼飞机的叶片在结构上都不是刚性的,因此精确的模拟必须考虑到叶片的结构动力学。此外,将旋翼飞机调整至所需的推力和力矩目标取决于空气动力载荷和结构变形,反之亦然。此外,机身与转子流场的相互作用可能很重要,因此必须适应叶片与机身之间的相对运动。因此,完整的仿真需要结合空气动力学,结构和内饰,并具有对复杂几何形状进行建模的能力。 NASA最近在总体基础航空计划下启动了亚音速旋翼(SRW)项目。在SRW的背景下,人们致力于使用结构化和非结构化网格来推动高保真旋翼飞机流动仿真技术的发展。结构化网格求解器在计算速度上具有优势,但是,即使使用过度网格方法可以容纳非常复杂的配置,复杂的结构化网格系统的生成也可能需要花费数月的时间来建立。结果,许多使用结构化网格CFD的旋翼飞机仿真忽略了机身。另一方面,非结构化网格求解器可以轻松处理复杂的几何体,但执行速度较慢。但是,计算机硬件和CFD算法的进步使非结构化网格求解器成为了最先进的计算程序,因此使用非结构化网格的旋翼飞机仿真现在是可行的。本工作的目的是开发基于非结构化CFD求解器的第一原理旋翼飞机仿真工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号