首页> 外文OA文献 >On the Hilbert-Huang Transform Data Processing System Development
【2h】

On the Hilbert-Huang Transform Data Processing System Development

机译:希尔伯特-黄变换数据处理系统开发

摘要

One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The Fourier view of nonlinear mechanics that had existed for a long time, and the associated FFT (fairly recent development), carry strong a-priori assumptions about the source data, such as linearity and of being stationary. Natural phenomena measurements are essentially nonlinear and nonstationary. A very recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT) proposes a novel approach to the solution for the nonlinear class of spectrum analysis problems. Using the Empirical Mode Decomposition (EMD) followed by the Hilbert Transform of the empirical decomposition data (HT), the HHT allows spectrum analysis of nonlinear and nonstationary data by using an engineering a-posteriori data processing, based on the EMD algorithm. This results in a non-constrained decomposition of a source real value data vector into a finite set of Intrinsic Mode Functions (IMF) that can be further analyzed for spectrum interpretation by the classical Hilbert Transform. This paper describes phase one of the development of a new engineering tool, the HHT Data Processing System (HHTDPS). The HHTDPS allows applying the "T to a data vector in a fashion similar to the heritage FFT. It is a generic, low cost, high performance personal computer (PC) based system that implements the HHT computational algorithms in a user friendly, file driven environment. This paper also presents a quantitative analysis for a complex waveform data sample, a summary of technology commercialization efforts and the lessons learned from this new technology development.
机译:科学和工程数据频谱分析中使用的主要遗产工具之一是傅立叶积分变换及其高性能的数字等效形式-快速傅立叶变换(FFT)。长期存在的非线性力学的傅立叶视图以及相关的FFT(相当近期的发展)对源数据具有很强的先验假设,例如线性和平稳性。自然现象的测量本质上是非线性的并且是不稳定的。美国国家航空航天局(NASA)的戈达德太空飞行中心(GSFC)的一项最新进展称为希尔伯特-黄变换(HHT),提出了一种新颖的方法来解决非线性频谱分析问题。通过使用经验模式分解(EMD)和经验分解数据(HT)的希尔伯特变换,HHT可以通过基于EMD算法的工程后验数据处理,对非线性和非平稳数据进行频谱分析。这导致将源实值数据向量无约束地分解为有限的本征模式函数(IMF)集,可以通过经典的希尔伯特变换对其进行进一步分析以进行频谱解释。本文介绍了新工程工具HHT数据处理系统(HHTDPS)的开发的第一阶段。 HHTDPS允许以类似于传统FFT的方式将“ T”应用于数据向量。它是一种基于通用,低成本,高性能个人计算机(PC)的系统,可在用户友好的文件驱动下实现HHT计算算法本文还提供了对复杂波形数据样本的定量分析,技术商业化工作的总结以及从这项新技术开发中学到的经验教训。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号