首页> 外文OA文献 >Estimating crop area using seasonal time series of Enhanced Vegetation Index from MODIS satellite imagery
【2h】

Estimating crop area using seasonal time series of Enhanced Vegetation Index from MODIS satellite imagery

机译:使用来自MODIS卫星影像的增强植被指数的季节性时间序列估算作物面积

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

[Abstract]: Cereal grain is one of the main export commodities of Australian agriculture. Over the past decade, crop yield forecasts for wheat and sorghum have shown appreciable utility for industry planning at shire, state and national scales. There is now an increasing drive from industry for more accurate and cost effective crop production forecasts. In order to generate production estimates, accurate crop area estimates are needed by the end of the cropping season. A range of multivariate methods for analysing remotely sensed Enhanced Vegetation Index (EVI) from 16-day Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery within the cropping period (i.e. April to November) were investigated to estimate crop area for wheat, barley, chickpea and total winter cropped area for a case study region in NE Australia. Each pixel classification method was trained on ground truth data collected from the study region. Three approaches to pixel classification were examined: (i) cluster analysis of trajectories of EVI values from consecutive multi-date imagery during the crop growth period, (ii) Harmonic Analysis of the Time Series (HANTS) of the EVI values, and (iii) Principal Component Analysis (PCA) of the time series of EVI values. Images classified using these three approaches were compared with each other, and with a classification based on the single MODIS image taken at peak EVI. Imagery for the 2003 and 2004 seasons was used to assess the ability of the methods to determine wheat, barley, chickpea and total cropped area estimates. The accuracy at pixel scale was determined by the percent correct classification metric by contrasting all pixel scale samples with independent pixel observations. At a shire level, aggregated total crop area estimates were compared with surveyed estimates. All multi-temporal methods showed significant overall capability to estimate total winter crop area. There was high accuracy at a pixel scale (>98% correct classification) for identifying overall winter cropping at pixel scale. Discrimination among crops was less accurate, however. Although the use of single-date EVI data produced high accuracy for estimates of wheat area at shire-scale, the result contradicted the poor pixel scale accuracy associated with this approach, due to fortuitous compensating errors. Further studies are needed to extrapolate the multi-temporal approaches to other geographical areas and to improve the lead time for deriving cropped area estimates before harvest.udud
机译:[摘要]:谷物是澳大利亚农业的主要出口商品之一。在过去的十年中,对小麦和高粱的作物单产预测显示出在郡,州和国家级的产业规划中都具有相当大的实用性。现在,业界越来越需要更准确和更具成本效益的作物产量预测。为了产生产量估算,在作物季节结束之前需要准确的作物面积估算。研究了一系列在种植期(即4月至11月)内通过16天中分辨率成像光谱仪(MODIS)卫星图像分析遥感增强植被指数(EVI)的多元方法,以估算小麦,大麦,鹰嘴豆的作物面积和澳大利亚东北部案例研究区域的冬季总播种面积。每种像素分类方法都是根据从研究区域收集的地面真实数据进行训练的。审查了三种像素分类方法:(i)作物生长期间连续多日期图像的EVI值轨迹的聚类分析;(ii)EVI值的时间序列(HANTS)的谐波分析;和(iii) )EVI值时间序列的主成分分析(PCA)。将使用这三种方法分类的图像相互比较,并基于在峰值EVI拍摄的单个MODIS图像进行分类。使用2003年和2004年季节的影像来评估该方法确定小麦,大麦,鹰嘴豆和总作物面积估计值的能力。通过将所有像素比例样本与独立的像素观察值进行对比,可以通过正确分类百分比百分比来确定像素比例的精度。在郡一级,将总的作物总面积估算值与调查的估算值进行比较。所有的多时相方法都显示出显着的整体能力来估算冬季总作物面积。以像素为单位的精度很高(正确分类率> 98%),可以以像素为单位识别整个冬季作物。但是,农作物之间的区分不太准确。尽管使用单次EVI数据可以在夏时制的小麦面积估计中获得很高的准确性,但是由于偶然的补偿误差,该结果与这种方法所带来的像素级精度差相矛盾。需要进一步的研究以将多时间方法外推到其他地理区域,并改善在收获前得出作物面积估计数的提前期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号