首页> 外文OA文献 >Étude du comportement, de la capacité, et de la rigidité en flexion de colonnes circulaires en béton armé de barres et de spirales PRF chargées excentriquement
【2h】

Étude du comportement, de la capacité, et de la rigidité en flexion de colonnes circulaires en béton armé de barres et de spirales PRF chargées excentriquement

机译:偏心钢筋和PRF螺旋增强圆形混凝土柱的性能,承载力和抗弯刚度的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract : Deterioration of concrete structures reinforced with steel bars can be seen daily in regions with aggressive weather as steel-corrosion problems worsen. Fiber-reinforced-polymers (FRP) reinforcement has proven its feasibility through different civil structural elements. Present guidelines for FRP structures in North-America and Europe have not yet handled axially loaded members, due to the lack of research and experiments. This research takes charge of providing experimental database as well as extensive analyses and design recommendations of circular concrete columns reinforced totally with different FRP bars and spirals/hoops (FRP-RC columns). Full-scale columns were tested under monotonic loading with different levels of eccentricity. Test variables included the eccentricity-to-diameter ratio (e/D); reinforcement type (GFRP and CFRP vs. steel); concrete strength; longitudinal and transverse reinforcement ratio; and confinement configuration. All specimens measured 305 mm diameter and 1500 mm height. Test results indicated that specimens reinforced with glass-FRP (GFRP) or carbon-FRP (CFRP) reached their peak strengths with no damages to GFRP or CFRP rebar on either side of specimens. Specimens with CFRP reinforcement (CFRP-RC) behaved very similarly to their steel counterparts, and achieved almost the same nominal axial forces. Specimens with GFRP reinforcement (GFRP-RC) exhibited, however, reduced stiffness and achieved lower nominal axial forces than their steel or CFRP counterparts. Failure of GFRP-RC and CFRP-RC specimens was dominated by concrete crushing at low levels of eccentricity (e/D ratios of 8.2% and 16.4%). Experimental strain results revealed that GFRP bars developed high levels of strains and stresses on the compression and tension sides and hence the GFRP-RC specimens could sustain constant axial load after peak for some time up to the limit of concrete crushing at higher levels of eccentricity (e/D ratios of 8.2% and 16.4%), which help to delay the full damage. At these levels, flexural–tension failure initiated in the GFRP-RC specimens resulting from large axial and lateral deformations and cracks on the tension side until secondary compression failure occurred due to strain limitations in concrete and degradation of the concrete compressive block. The failure of CFRP-RC specimens at higher levels of eccentricity (e/D ratios of 8.2% and 16.4%) was characterized as flexural–compression in which it took place in a less brittle manner. On the other hand, this research also included different studies to analyze the test results, evaluate rebar efficiency, and provide recommendations for analysis and design. It was, therefore, indicated that the axial and flexural capacities of the tested FRP-RC specimens could be reasonably predicted using plane sectional analysis, utilizing the equivalent rectangular stress block (ERSB) parameters given by the ACI 440.1R-15 or CSA S806-12. All predictions underestimated the actual strength with variable levels of conservatism ranged between 1.05 to 1.25 for the GFRP-RC specimens and between 1.20 to 1.40 for the CFRP-RC specimens. These levels were noticeably reduced to critical limits in specimens with high-strength concretes. An elaborate review was made to the available ERSB parameters in the present steel and FRP design standards and guidelines. Modified expressions of the ERSB given in ACI 440.1R-15 and CSA S806-12 were developed. The results indicated good correlation of predicted and measured strength values with enhanced levels of conservatism. Additionally, sets of axial force–bending moment (P-M) interaction diagrams and indicative bar charts are introduced, and recommendations drawn. The compressive-strength contribution of FRP reinforcement was thoroughly reviewed and discussed. The minimum GFRP and CFRP reinforcement ratios to avoid rebar rupturing were broadly examined. Finally, the flexure stiffness (EI) of the tested specimens was analytically determined and compared with the available expressions using experimental and analytical M-ψ responses. Proposed equations are developed and validated against the experimental results to represent the stiffness of GFRP-RC and CFRP-RC columns at service and ultimate levels.
机译:摘要:在天气恶劣的地区,随着钢筋腐蚀问题的恶化,每天都可以看到钢筋加固的混凝土结构的劣化。纤维增强聚合物(FRP)增强已经通过不同的土木结构元素证明了其可行性。由于缺乏研究和实验,北美和欧洲目前的FRP结构准则尚未处理轴向受力构件。这项研究负责提供实验数据库,并对完全用不同的FRP筋和螺旋/箍增强的圆形混凝土柱(FRP-RC柱)进行广泛的分析和设计建议。满量程色谱柱在单调加载下以不同的偏心率进行了测试。测试变量包括偏心率与直径之比(e / D);增强类型(GFRP和CFRP与钢相比);混凝土强度纵向和横向配比和限制配置。所有样品的直径均为305 mm,高度为1500 mm。测试结果表明,用玻璃纤维增​​强塑料(GFRP)或碳纤维增强塑料(CFRP)增强的试样达到了峰值强度,而试样两侧的GFRP或CFRP钢筋均无损坏。带有CFRP增强材料(CFRP-RC)的试样的行为与钢材类似,并且达到了几乎相同的标称轴向力。但是,与玻璃钢或CFRP相比,具有GFRP增强材料的试样(GFRP-RC)的刚度降低并且标称轴向力更低。 GFRP-RC和CFRP-RC试样的破坏主要是在低偏心率(e / D比为8.2%和16.4%)下进行的混凝土压碎。实验应变结果表明,GFRP筋在压缩和拉伸侧产生高水平的应变和应力,因此GFRP-RC试样在峰值后可以保持恒定的轴向载荷一段时间,直到在较高的偏心度下混凝土破碎的极限为止( e / D比率分别为8.2%和16.4%),这有助于延迟全部损坏。在这些水平上,GFRP-RC试件开始出现弯曲-拉伸破坏,这是由于在拉伸侧出现大的轴向和横向变形和裂缝,直到由于混凝土中的应变限制和混凝土压缩块的退化而导致了二次压缩破坏。 CFRP-RC试件在较高的偏心率(e / D比为8.2%和16.4%)下的破坏表现为弯曲压缩,其脆性较小。另一方面,这项研究还包括不同的研究,以分析测试结果,评估钢筋效率并为分析和设计提供建议。因此,这表明,可以使用ACI 440.1R-15或CSA S806-A给出的等效矩形应力块(ERSB)参数,通过平面截面分析来合理地预测所测试的FRP-RC标本的轴向和弯曲能力。 12所有的预测都低估了实际强度,而对于GFRP-RC标本,保守性水平变化不一,介于1.05至1.25之间;对于CFRP-RC标本,则介于1.20至1.40之间。在使用高强度混凝土的样品中,这些含量明显降低到临界极限。对当前钢和FRP设计标准和指南中可用的ERSB参数进行了详尽的审查。开发了ACI 440.1R-15和CSA S806-12中提供的ERSB修饰表达。结果表明,预测强度值和测量强度值与保守程度的提高具有良好的相关性。此外,还介绍了一组轴向力-弯矩(P-M)相互作用图和指示条形图,并提出了一些建议。全面审查和讨论了FRP增强材料的抗压强度贡献。广泛检查了避免钢筋破裂的最小GFRP和CFRP增强比。最后,通过分析确定测试样品的弯曲刚度(EI),并使用实验和分析M-ψ响应将其与可用表达式进行比较。根据实验结果开发并验证了建议的方程式,以表示在使用和最终使用水平下GFRP-RC和CFRP-RC柱的刚度。

著录项

  • 作者

    Mohamed Ahmed Abdeldayem;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号