首页> 外文OA文献 >Colonnes en béton armé renforcées de PRFV sous un chargement sismique simulé
【2h】

Colonnes en béton armé renforcées de PRFV sous un chargement sismique simulé

机译:地震作用下玻璃纤维增​​强的钢筋混凝土柱

摘要

Abstract : Steel and fiber-reinforced-polymer (FRP) materials have different mechanical and physical characteristics. High corrosion resistance, high strength to weight ratio, non-conductivity, favorable fatigue enable the FRP to be considered as alternative reinforcement for structures in harsh environment. Meanwhile, FRP bars have low modulus of elasticity and linear-elastic stress-strain curve. These features raise concerns about the applicability of using such materials as reinforcement for structures prone to earthquakes. The main demand for the structural members in structures subjected to seismic loads is dissipating energy without strength loss which is known as ductility. In the rigid frames, columns are expected to be the primary elements of energy dissipation in structures subjected to seismic loads. The present study addresses the feasibility of reinforced-concrete columns totally reinforced with glass-fiber-reinforced-polymer (GFRP) bars achieving reasonable strength and the drift requirements specified in various codes. Eleven full-scale reinforced concrete columns—two reinforced with steel bars (as reference specimens) and nine totally reinforced with GFRP bars—were constructed and tested to failure. The columns were tested under quasi-static reversed cyclic lateral loading and simultaneously subjected to compression axial load. The columns are 400 mm square cross-section with a shear span 1650 mm. The specimen simulates a column with 3.7 m in height in a typical building with the point of contra-flexure located at the column mid-height. The tested parameters were the longitudinal reinforcement ratio (0.63, 0.95 and 2.14), the spacing of the transverse stirrups (80, 100, 150), tie configuration (C1, C2, C3 and C4), and axial load level (20%, 30% and 40%). The test results clearly show that properly designed and detailed GFRP-reinforced concrete columns could reach high deformation levels with no strength degradation. An acceptable level of energy dissipation compared with steel-reinforced concrete columns is provided by GFRP reinforced concrete columns. The dissipated energy of GFRP reinforced concrete columns was 75% and 70% of the counter steel columns at 2.5% and 4% drift ratio respectively. High drift capacity achieved by the columns up to 10% with no significant loss in strength. The high drift capacity and acceptable dissipated energy enable the GFRP columns to be part of the moment resisting frames in regions prone to seismic activities. The experimental ultimate drift ratios were compared with the estimated drift ratios using the confinement Equation in CSA S806-12. It was found from the comparison that the confinement Equation underestimates values of the drift ratios thus the experimental drift ratios were used to modify transverse FRP reinforcement area in CSA S806-12. The hysteretic behavior encouraged to propose a design procedure for the columns to be part of the moderate ductile and ductile moment resisting frames. The development of design guidelines, however, depends on determining the elastic and inelastic deformations and on assessing the force modification factor and equivalent plastic-hinge length for GFRP-reinforced concrete columns. The experimental results of the GFRP-reinforced columns were used to justify the design guideline, proving the accuracy of the proposed design equations.
机译:摘要:钢和纤维增强聚合物(FRP)材料具有不同的机械和物理特性。高耐腐蚀性,高强度重量比,非导电性,良好的疲劳性使FRP被认为是恶劣环境中结构的替代增强材料。同时,FRP筋的弹性模量低,线弹性应力应变曲线小。这些特征引起了人们对使用此类材料作为易地震结构的增强材料的适用性的担忧。对承受地震载荷的结构中的结构构件的主要需求是耗散能量而不会损失强度,这被称为延展性。在刚性框架中,预计圆柱将成为承受地震荷载的结构中能量耗散的主要元素。本研究解决了用玻璃纤维增​​强聚合物(GFRP)筋完全增强的钢筋混凝土柱的可行性,该强度达到了合理的强度,并满足了各种规范中规定的漂移要求。建造并测试了11根全尺寸钢筋混凝土柱,其中2根是钢筋(作为参考样本),另外9根是GFRP钢筋。在准静态反向循环侧向载荷下对圆柱进行了测试,同时承受了压缩轴向载荷。柱的横截面为400毫米见方,剪切跨度为1650毫米。该标本模拟一幢典型建筑中高3.7 m的圆柱,其反弯点位于圆柱的中间高度。测试的参数为:纵向配筋率(0.63、0.95和2.14),横向箍筋的间距(80、100、150),连接构型(C1,C2,C3和C4)和轴向载荷水平(20%, 30%和40%)。测试结果清楚地表明,经过适当设计和详细设计的GFRP增强混凝土柱可以达到较高的变形水平,而强度不会降低。与钢筋混凝土柱相比,GFRP钢筋混凝土柱可提供可接受的能量消散水平。 GFRP增强混凝土柱的耗散能量分别为2.5%和4%的漂移率的75%和70%。色谱柱可实现高达10%的高漂移能力,而强度没有明显损失。高漂移能力和可接受的耗散能量使GFRP柱成为易于地震活动区域中抗弯框架的一部分。使用CSA S806-12中的约束公式,将实验的最终漂移率与估计的漂移率进行比较。从比较中发现,约束方程低估了漂移比的值,因此在CSA S806-12中使用实验漂移比来修改横向FRP增强面积。滞后行为鼓励为圆柱提出设计程序,使其成为中等延性和延性力矩框架的一部分。但是,设计指南的制定取决于确定弹性和非弹性变形以及评估GFRP增强混凝土柱的力修正系数和等效塑性铰长度。 GFRP增强柱的实验结果被用来证明设计准则的正确性,证明了所提出设计方程的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号