首页> 外文OA文献 >Selectivity Supervision in Combining Pattern-Recognition Modalities by Feature- and Kernel-Selective Support Vector Machines
【2h】

Selectivity Supervision in Combining Pattern-Recognition Modalities by Feature- and Kernel-Selective Support Vector Machines

机译:特征和核选择支持向量机结合模式识别方式的选择性监督

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-modal pattern recognition must frequently truncate the set of initially available modalities. When a kernel-based approach is adopted within each modality, the problem of modality selection becomes mathematically analogous to that of wrapper-based feature selection. In this paper, we revise two implicitly wrapper-based methods of SVM-embedded selective kernel combination, the Relevance and Support Kernel Machines, so as to equip them with the ability to preset the desired level of feature-selectivity. Hence, a continuous axis of nested feature selection models is obtained, ranging from the absence of selectivity to the selection of single features. We thus unite the distinct processes of selection and classification within the two techniques in manner suitable for general application within Kernel-based multi-modal pattern recognition.
机译:多模式模式识别必须经常截断最初可用模式的集合。当在每个模态中采用基于内核的方法时,模态选择的问题在数学上变得类似于基于包装器的特征选择。在本文中,我们修订了两种基于隐式包装的支持向量机的嵌入式SVM选择性方法,即相关性和支持内核机器,以使它们具备预先设定所需特征选择性水平的能力。因此,获得了嵌套特征选择模型的连续轴,范围从不存在选择性到单个特征的选择。因此,我们以适合于基于内核的多模式模式识别中的一般应用的方式,将两种技术中不同的选择和分类过程结合在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号