首页> 外文OA文献 >A coordinate ascent method for solving semidefinite relaxations of non-convex quadratic integer programs
【2h】

A coordinate ascent method for solving semidefinite relaxations of non-convex quadratic integer programs

机译:解决非凸二次整数程序的半定松弛的坐标上升方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis we propose a coordinate ascent method for a class of semidefinite programming problems arising in the reformulation of non-convex quadratic optimization problems where the variables are restricted to subsets of the integer numbers.It is known that non-convex quadratic integer problems are NP-hard for two reasons: the non-convexity of the objective function and the restrictions of integrality on the variables. Therefore no polynomial time algorithm is known for solving this class of optimization problems. Standard techniques for addressing these probles are reformulations through linearization or semidefinite programming (SDP), aiming at producing tight convex relaxations of the problem that are then embedded into branch-and-bound schemes. Semidefinite programming has been proved to be a powerful tool for constructing strong convex relaxations for several combinatorial optimization problems, however at increased computational cost. Interior-point based algorithms are the classical solution approaches for semidefinite programming problems, although it turns out that large scale instances are beyond the scope of these algorithms. Buchheim and Wiegele have devised an SDP-based branch-and-bound algorithm (Q-MIST) for a class of mixed-integer quadratic programming problems, that contains the quadratic problems we are considering here. The semidefinite relaxations are solved using the SDP solver CSDP, which based on interior point methods. It has been proved experimentally that this approach outperforms the state-of-the-art non convex mixed-integer programming software COUENNE. Recently, Dong has studied the same class of quadratic problems, and has proposed a semi-infinite convex relaxation. The resulting separation problem is solved by a primal-barrier coordinate minimization algorithm.In this thesis, we have developed an algorithm that on the one hand exploits the structure of the semidefinite relaxations proposed by Buchheim and Wiegele, namely a small total number of active constraints and constraint matrices characterized by a low rank. On the other hand, our algorithm exploits this special structure by solving the dual problem of the semidefinite relaxation, using a barrier method in combination with a coordinate-wise exact line search, motivated by the algorithm presented by Dong. The main ingredient of our algorithm is the computationally cheap update at each iteration and an easy computation of the exact step size. Compared to interior point methods, our approach is much faster in obtaining strong dual bounds. Moreover, no explicit separation and re-optimization is necessary even if the set of primal constraints is large, since in our dual approach this is covered by implicitly considering all primal constraints when selecting the next coordinate. Even more, the structure of the problem allows us to perform a plane search instead of a single line search, this speeds up the convergence of the algorithm. Finally, linear constraints are easily integrated into the algorithmic framework.We have performed experimental comparisons on randomly generated instances, showing that our approach significantly improves the performance of Q-MIST when compared with CSDP and outperforms other specialized global optimization software, such as BARON.
机译:在本文中,我们提出了一种针对非凸二次优化问题的重新定义中出现的一类半定规划问题的坐标上升方法,其中将变量限制为整数的子集。众所周知,非凸二次整数问题是NP困难的原因有两个:目标函数的非凸性和变量的完整性约束。因此,没有多项式时间算法可解决此类优化问题。解决这些问题的标准技术是通过线性化或半确定编程(SDP)进行重新公式化,旨在产生问题的紧密凸松弛,然后将其嵌入分支定界方案中。事实证明,半定规划是为几个组合优化问题构造强凸松弛的强大工具,但计算量却增加了。尽管事实证明,大型实例超出了这些算法的范围,但是基于内点的算法是解决半定规划问题的经典解决方案。 Buchheim和Wiegele为一类混合整数二次编程问题设计了一种基于SDP的分支定界算法(Q-MIST),其中包含我们在此处考虑的二次问题。使用基于内部点方法的SDP求解器CSDP求解半定松弛。实验证明,该方法优于最新的非凸混合整数编程软件COUENNE。最近,Dong研究了同一类二次问题,并提出了半无限凸松弛法。由此产生的分离问题通过原始壁垒坐标最小化算法得以解决。在本文中,我们开发了一种算法,该算法一方面利用了Buchheim和Wiegele提出的半定松弛的结构,即活动约束总数少和具有较低等级的约束矩阵。另一方面,在Dong提出的算法的推动下,我们的算法通过使用势垒方法结合坐标精确精确线搜索来解决半确定松弛的对偶问题,从而利用了这种特殊结构。我们算法的主要组成部分是每次迭代的计算便宜的更新以及精确步长的轻松计算。与内部点方法相比,我们的方法在获得强对偶边界方面要快得多。此外,即使原始约束集很大,也不需要显式的分离和重新优化,因为在我们的双重方法中,这是通过选择下一个坐标时隐式考虑所有原始约束来解决的。更重要的是,问题的结构使我们可以执行平面搜索而不是单线搜索,从而加快了算法的收敛速度。最后,线性约束很容易集成到算法框架中。我们对随机生成的实例进行了实验比较,表明与CSDP相比,我们的方法显着提高了Q-MIST的性能,并且胜过了其他专门的全局优化软件(如BARON)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号