首页> 外文OA文献 >Recovery of parametric models from range images: The case for superquadrics with global deformations
【2h】

Recovery of parametric models from range images: The case for superquadrics with global deformations

机译:从范围图像中恢复参数模型:具有整体变形的超二次方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A method for recovery of compact volumetric models for shape representation of single-part objects in computer vision is introduced. The models are superquadrics with parametric deformations (bending, tapering, and cavity deformation). The input for the model recovery is three-dimensional range points. We define an energy or cost function whose value depends on the distance of points from the model's surface and on the overall size of the model. Model recovery is formulated as a least-squares minimization of the cost function for all range points belonging to a single part. The initial estimate required for minimization is the rough position, orientation and size of the object. During the iterative gradient descent minimization process, all model parameters are adjusted simultaneously, recovering position, orientation, size and shape of the model, such that most of the given range points lie close to the model's surface. Because of the ambiguity of superquadric models, the same shape can be described with different sets of parameters. A specific solution among several acceptable solutions, which are all minima in the parameter space, can be reached by constraining the search to a part of the parameter space. The many shallow local minima in the parameter space are avoided as a solution by using a stochastic technique during minimization. Results using real range data show that the recovered models are stable and that the recovery procedure is fast.
机译:介绍了一种用于在计算机视觉中恢复紧凑体积模型以表示单个零件形状的方法。这些模型是具有参数变形(弯曲,锥化和型腔变形)的超二次方。模型恢复的输入是三维范围点。我们定义一个能量或成本函数,其值取决于点到模型表面的距离以及模型的整体大小。将模型恢复公式化为对属于单个零件的所有范围点的成本函数的最小二乘最小化。最小化所需的初始估计是物体的大致位置,方向和大小。在迭代梯度下降最小化过程中,将同时调整所有模型参数,以恢复模型的位置,方向,大小和形状,从而使大多数给定的范围点都位于模型表面附近。由于超二次模型的含糊性,可以用不同的参数集描述相同的形状。通过将搜索约束到参数空间的一部分,可以找到几个可接受的解决方案中的一个特定解决方案,这些解决方案在参数空间中都是最小值。通过在最小化过程中使用随机技术,避免了参数空间中的许多浅局部最小值。使用实际范围数据的结果表明,恢复的模型是稳定的,并且恢复过程很快。

著录项

  • 作者

    Solina Franc; Bajcsy Ruzena;

  • 作者单位
  • 年度 1990
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号