首页> 外文OA文献 >Spotlight on “Effect of Injection Current and Temperature on Signal Strength in a Laser Diode Optical Feedback Interferometer”
【2h】

Spotlight on “Effect of Injection Current and Temperature on Signal Strength in a Laser Diode Optical Feedback Interferometer”

机译:聚焦“注入电流和温度对激光二极管光反馈干涉仪中信号强度的影响”

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Backreflections from the external world are among the worst enemies of lasers. Most people with some knowledge in optics are well aware of that. Optical feedback can induce fluctuations in the output power, lasing frequency drifts, bifurcation phenomena, mode hopping and ultimately chaos. In other words, under strong feedback conditions a laser can behave very differently from what a laser is expected to do. Yet, in some circumstances, your worst enemy can even become your best friend... ududEach time a system suffers from strong sensitivity to some external agents, we can think of exploiting this vulnerability for sensing. Backreflections from objects to be monitored are indeed at the basis of what is commonly known as optical feedback interferometry (OFI), which is one of the most widely employed techniques in sensing applications, for instance in measurements of displacement, velocity, and vibration. ududIn OFI, two possible approaches can be used to access information on the target. We can do it optically, by measuring the variations induced by the optical feedback on the intensity of the light emitted by the rear facet of the laser diode; or electrically, by measuring the voltage variations induced across the laser terminals. In both cases, to achieve high sensitivity, it is fundamental to work with the maximum signal-to-noise ratio. It is not surprising that both optical and electrical OFI signals depend on the laser structure and on the operation parameters, such as the laser bias current. What is far less obvious is that the dependence of the OFI signal strength versus injection current can be dramatically different for the optical and electrical signals. Some observations of this tricky behaviour were reported in the literature, but a clear understanding of this phenomenon was still missing... until the work by Al Roumy and co-workers.ududThese researchers have succeeded at developing a simple model that provides a clear explanation of the dependence of the OFI signal on laser diode injection current and temperature. Compared to previous studies, the key used in their model is to include a realistic dependence of the laser slope efficiency on the injection current and temperature. Nothing more than that, yet extraordinarily effective. In fact, their model nicely shows why the optical signal strength increases with injection current, while the electrical signal is at a maximum just above the laser threshold, and subsequently decreases at higher injection current. Moreover, the same model provides also a clear explanation of the more pronounced decrease in the optical signal with temperature, compared to the electrical signal. ududAs a main result, golden rules to select the optimum injection current to maximise OFI sensitivity are provided for both optical and electrical read-out configurations. The biasing strategy is indeed radically different for the two schemes, the first exhibiting better sensitivity at higher bias current, the second having the optimal injection current close to threshold. This study was limited to single-mode laser structures, but the authors are confident on its extension to multiple transverse or longitudinal mode operation. ududFinally, note that there is also lesson to be learned from the approach itself followed in this work. The model was derived from the Lang and Kobayashi equations, which were proposed more than thirty years ago to study the effects of weak optical feedback on semiconductor laser properties. The results achieved by Al Roumy and coworkers were somewhat hidden inside these equations, but nobody had been able to unveil them before. This demonstrates that new stories may come from well-known models, so we must never believe that old models have already told us everything they can.
机译:来自外部世界的背向反射是激光的最大敌人。大多数具有光学知识的人都知道这一点。光反馈会引起输出功率的波动,激射频率漂移,分叉现象,模式跳变并最终导致混乱。换句话说,在强反馈条件下,激光器的行为可能与预期的激光器有很大不同。但是,在某些情况下,您最大的敌人甚至可以成为您最好的朋友... ud ud系统每次对某些外部代理都具有强烈的敏感性时,我们可以考虑利用此漏洞进行感知。实际上,要监视的对象产生的背反射实际上是基于所谓的光反馈干涉法(OFI)的,它是传感应用(例如,位移,速度和振动的测量)中使用最广泛的技术之一。在OFI中,可以使用两种可能的方法来访问目标上的信息。我们可以通过测量光反馈对激光二极管后端面发出的光强度产生的变化进行光学控制;或通过测量跨激光端子感应的电压变化来实现。在这两种情况下,要实现高灵敏度,最重要的是要以最大的信噪比工作。光学和电OFI信号都取决于激光器的结构和操作参数(例如激光器偏置电流)也就不足为奇了。不太明显的是,对于光和电信号,OFI信号强度与注入电流之间的相关性可能会大不相同。在文献中已经报道了这种棘手行为的一些观察结果,但直到Al Roumy及其同事的工作之前,仍然缺乏对这种现象的清晰理解。 ud ud这些研究人员已经成功开发了一个简单的模型,可以提供清楚地说明了OFI信号对激光二极管注入电流和温度的依赖性。与以前的研究相比,他们模型中使用的关键是要包括激光斜率效率对注入电流和温度的实际依赖性。除此之外,还非常有效。实际上,他们的模型很好地说明了为什么光信号强度会随注入电流的增加而增加,而电信号的最大值恰好高于激光阈值,然后在较高的注入电流时会降低。此外,同一模型还提供了一个清晰的解释,即与电信号相比,光信号随温度的下降更为明显。作为主要结果,为光学和电气读出配置提供了选择最佳注入电流以最大化OFI灵敏度的黄金法则。对于这两种方案,偏置策略的确存在根本不同,第一种方案在较高的偏置电流下表现出更好的灵敏度,第二种方案则具有接近阈值的最佳注入电流。这项研究仅限于单模激光结构,但作者对其扩展到多横向或纵向模式操作充满信心。 ud ud最后,请注意,从本工作遵循的方法本身中也要吸取教训。该模型是从三十多年前提出的Lang和Kobayashi方程中得出的,该方程用于研究弱光反馈对半导体激光特性的影响。 Al Roumy和他的同事所获得的结果多少隐藏在这些等式中,但是以前没有人能够揭晓它们。这表明新的故事可能来自知名的模型,因此我们绝对不能相信旧模型已经告诉了我们所有可能的信息。

著录项

  • 作者

    Morichetti F.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号