首页> 外文OA文献 >A Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach in an evolving environment
【2h】

A Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach in an evolving environment

机译:不断变化的环境中的系统性半监督自适应故障诊断方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fault diagnostic methods are challenged by their applications to industrial components operating in evolving environments of their working conditions. To overcome this problem, we propose a Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach (4SFD), which allows dynamically selecting the features to be used for performing the diagnosis, detecting the necessity of updating the diagnostic model and automatically updating it. Within the proposed approach, the main novelty is the semi-supervised feature selection method developed to dynamically select the set of features in response to the evolving environment. An artificial Gaussian and a real world bearing dataset are considered for the verification of the proposed approach.
机译:故障诊断方法因其在不断变化的工作环境中运行的工业组件的应用而受到挑战。为克服此问题,我们提出了一种系统的半监督自适应故障诊断方法(4SFD),该方法可动态选择要用于执行诊断的功能,检测更新诊断模型并自动对其进行更新的必要性。在提出的方法中,主要新颖之处在于半监督特征选择方法,该方法被开发为响应不断变化的环境动态选择特征集。考虑使用人工高斯和真实世界的轴承数据集来验证所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号