首页> 外文OA文献 >The role of the spatial scale and data accuracy on deep-seated gravitational slope deformation modeling: The Ronco landslide, Italy
【2h】

The role of the spatial scale and data accuracy on deep-seated gravitational slope deformation modeling: The Ronco landslide, Italy

机译:空间尺度和数据精度在深层重力斜坡变形建模中的作用:意大利Ronco滑坡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent decades numerical models have been developed and extensively used for landslide hazard and risk assessment. The reliability of the outcomes of these numerical simulations must be evaluated carefully as it mainly depends on the soundness of the physicalmodel of the landslide that in turn often requires the integration of several surface and subsurface surveys in order to achieve a satisfactory spatial resolution. Merging diverse sources of data may be particularly complex for large landslides, because of intrinsic heterogeneity and possible great data uncertainty. In this paper,we assess the spatial scale and data accuracy required for effective numerical landslide modeling. We focus on two particular aspects: the model extent and the accuracy of input datasets. The Ronco landslide, a deep-seated gravitational slope deformation (DSGSD) located in the North of Italy, was used as a test bed. Geological, geomorphological and geophysical data were combined and, as a result, eight models with different spatial scales and data accuracies were obtained. The models were used to run a back analysis of an event in 2002, during which part of the slope moved after intense rainfalls. The results point to the key role of a proper geomorphological zonation to properly set the model extent. The accuracy level of the input datasets should also be tuned. We suggest applying the approach presented here to other DSGSDs with different geological and geomorphological settings to test the reliability of our findings.
机译:在最近的几十年中,已经开发了数值模型并将其广泛用于滑坡灾害和风险评估。这些数值模拟的结果的可靠性必须仔细评估,因为它主要取决于滑坡物理模型的健全性,而后者又往往需要整合多个地面和地下勘测才能获得令人满意的空间分辨率。由于内在的异质性和可能的​​巨大数据不确定性,合并各种数据源对于大型滑坡可能特别复杂。在本文中,我们评估了有效的数值滑坡建模所需的空间规模和数据准确性。我们关注两个特定方面:模型范围和输入数据集的准确性。位于意大利北部的深层重力斜坡变形(DSGSD)Ronco滑坡被用作试验台。结合地质,地貌和地球物理数据,得到了八个具有不同空间尺度和数据精度的模型。这些模型用于对2002年的一次事件进行反向分析,在此期间,暴雨过后部分斜坡发生了移动。结果指出正确的地貌分区对正确设置模型范围的关键作用。输入数据集的准确性级别也应进行调整。我们建议将此处介绍的方法应用于具有不同地质和地貌设置的其他DSGSD,以测试我们发现的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号