首页> 外文OA文献 >Exact solutions of steady plane potential compressible flows: A new approach.
【2h】

Exact solutions of steady plane potential compressible flows: A new approach.

机译:稳定平面潜在可压缩流的精确解:一种新方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this dissertation is the integration of the governing equations of motion for steady, two-dimensional potential gas flows. Although there has been an ongoing search for the solutions of these equations for over one hundred and fifty years, only a limited number of exact solutions in closed form exist prior to this thesis. The methods or processes that were employed in the past inevitably required dealing with a non-linear partial differential equation in the potential function with unmanageable boundary conditions or pre-deciding the type of gas that flows along a flow pattern. By adopting and pursuing a new approach, exact solutions in closed form are obtained in this thesis. This approach specifies a priori the form of the streamline pattern or a specific geometric pattern and determines the exact solution and the permissible gas for each chosen pattern. This approach also obtains exact solutions of the non-linear partial differential equation in the potential function even though it does not deal directly with this equation. This dissertation contains two parts. The first part treats and develops investigations when the forms for the flow patterns are considered. Following the classification of all permissible flows for the chosen forms, exact solutions for these permissible flows are determined. The second part of this thesis is concerned with specified streamline patterns defined by Re$lbrack f(z)brack$ = constant or a linear combination of Re$lbrack f(z)brack$ and Im$lbrack f(z)brack$ equal to any constant when f(z) is a known analytic function of z. This new approach involves transformations of independent variables only so that systems of ordinary differential equations and linear partial differential are dealt with. New and existing exact solutions in closed form of these equations are obtained. However, in some cases, the transformation employed yielded nonlinear ordinary differential equations for which only particular solutions were obtained. In addition, equations of state corresponding to these solutions are also determined and analyzed. The exact solutions for incompressible, inviscid and irrotational flows can also be easily obtained by this new approach.Dept. of Mathematics and Statistics. Paper copy at Leddy Library: Theses u26 Major Papers - Basement, West Bldg. / Call Number: Thesis1994 .H875. Source: Dissertation Abstracts International, Volume: 56-11, Section: B, page: 6154. Adviser: O. P. Chandna. Thesis (Ph.D.)--University of Windsor (Canada), 1994.
机译:本文的目的是对稳定的二维潜在气流的运动控制方程进行积分。尽管在一百五十多年中一直在寻找这些方程的解,但是在此之前,只有有限数量的封闭形式的精确解存在。过去采用的方法或过程不可避免地需要处理势函数中具有不可控制边界条件的非线性偏微分方程,或者预先确定沿流型流动的气体类型。通过采用和追求一种新的方法,本文获得了封闭形式的精确解。该方法先验地指定了流线型式或特定几何型式的形式,并确定了每种选择型式的精确解和允许气体。即使该方法不直接处理该方程,它也可以在势函数中获得非线性偏微分方程的精确解。本文分为两个部分。第一部分在考虑流动模式的形式时进行研究并开展研究。在对所选表格的所有允许流量进行分类之后,将确定这些允许流量的精确解。本文的第二部分涉及由Re $ lbrack f(z) rbrack $ =常数或Re $ lbrack f(z) rbrack $和Im $ lbrack f(当f(z)是z的已知解析函数时,z) rbrack $等于任何常数。这种新方法仅涉及自变量的转换,因此可以处理常微分方程和线性偏微分方程组。得到这些方程式的封闭形式的新的和现有的精确解。但是,在某些情况下,采用的变换会产生非线性常微分方程,仅能获得特定的解。另外,还确定并分析了与这些解相对应的状态方程。通过这种新方法,也可以轻松获得不可压缩,无粘性和无旋流的精确解。数学和统计学。莱迪图书馆的纸质副本:论文主要论文-西楼地下室。 /电话号码:Thesis1994 .H875。资料来源:国际论文摘要,第56-11卷,第B部分,第6154页。顾问:O。P. Chandna。论文(博士学位)-温莎大学(加拿大),1994。

著录项

  • 作者

    Husain Iqbal.;

  • 作者单位
  • 年度 1994
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号