首页> 外文OA文献 >Experimental Investigation of Laser Cladding Bead Morphology and Process Parameter Relationship for Additive Manufacturing Process Characterization
【2h】

Experimental Investigation of Laser Cladding Bead Morphology and Process Parameter Relationship for Additive Manufacturing Process Characterization

机译:激光熔覆珠形貌与工艺参数关系用于增材制造工艺表征的实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During the past two decades, basic and applied research has led to an in-depth understanding of the cladding process as well as to a variety of potential applications. Industry had been reluctant to adopt this technology mainly due to high investment costs, and the unpredictable and nonlinear behavior of the process. However, the repair and refurbishment sector of production engineering is flourishing. Most engineering applications require high strength and corrosion resistant materials for long term reliability and performance of the components; consequently, laser cladding (LC) has been explored as a viable solution for an additive manufacturing (AM) approach. Laser cladding is one of the material AM processes used to produce a metallurgically well-bonded deposition layer and now it has been integrated into the industrial manufacturing lines to create a quality surface. To obtain a desired-quality resulting part, a deep understanding of the process mechanisms is required since laser cladding is a multiple-parameter-dependent process. Developing a bead shape to process parameter model is challenging due to the nonlinear and dynamic nature of the LC environment. This introduces unique predictive modeling challenges for both single bead and overlapping bead configurations. A set of cladding experiments have been performed for single and multiple bead scenarios, and the effects of the transient conditions on the bead geometry for these scenarios have been investigated. It is found that the lead-in and lead-out conditions differ, corner geometry influences the bead height, and when changing the input power levels, the geometry values oscillate differently than the input pulses. The dynamic, time varying heating and solidification, for multiple layer scenarios, leads to challenging process planning and real time control strategies. Models are developed for single and overlapping beads using the analysis of variance (ANOVA) and Generalized reduced gradient (GRG) approach along with regression analysis to determine the process trends and the best modeling approaches. Since laser cladding (LC) process has potential to make 3D components; determination of the fill volume for the ‘near net shape’ and the appropriate fill rate is the primary challenge. Although the additive approach reduces many issues related to process planning, there are still issues related to accuracy, surface finish, and build time that require improvement.
机译:在过去的二十年中,基础研究和应用研究导致对熔覆过程以及各种潜在应用的深入了解。由于高昂的投资成本以及该过程不可预测的非线性行为,业界一直不愿采用该技术。但是,生产工程的维修和翻新部门正在蓬勃发展。大多数工程应用需要高强度和耐腐蚀的材料,以确保组件的长期可靠性和性能。因此,人们已经探索了激光熔覆(LC)作为增材制造(AM)方法的可行解决方案。激光熔覆是用于生产冶金学上良好结合的沉积层的材料增材制造工艺之一,如今,它已被集成到工业生产线中以产生高质量的表面。为了获得所需质量的零件,由于激光熔覆是一个取决于多参数的过程,因此需要对过程机理有深入的了解。由于液相色谱环境的非线性和动态特性,开发珠状工艺参数模型具有挑战性。这给单个焊珠和重叠焊珠配置带来了独特的预测建模挑战。已针对单个和多个焊珠方案进行了一组熔覆实验,并研究了这些方案中瞬态条件对焊珠几何形状的影响。发现引入和引出条件不同,拐角几何形状会影响磁珠高度,并且在更改输入功率水平时,几何值的振荡与输入脉冲的振荡不同。对于多层方案,动态的,时变的加热和固化导致了富有挑战性的过程计划和实时控制策略。使用方差分析(ANOVA)和广义缩减梯度(GRG)方法以及回归分析来确定单个和重叠珠子的模型,以确定过程趋势和最佳建模方法。由于激光熔覆(LC)工艺具有制造3D组件的潜力;确定“接近最终形状”的填充量和合适的填充率是主要挑战。尽管附加方法减少了许多与过程计划有关的问题,但仍然存在与精度,表面光洁度和制造时间有关的问题,需要改进。

著录项

  • 作者

    Saqib Syed Mohammad;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号