首页> 外文OA文献 >Computer simulation of particle matrix interactions in silicon carbide reinforced aluminium metal matrix composites.
【2h】

Computer simulation of particle matrix interactions in silicon carbide reinforced aluminium metal matrix composites.

机译:碳化硅增强铝金属基复合材料中颗粒基体相互作用的计算机模拟。

摘要

The present work aims at understanding particle matrix interactions in SiC reinforced aluminium metal matrix composites (MMCs) by means of computer simulation. Firstly, to explore the basic role of hard particles, the stress field around a spherical SiC particle, the stress and the energy gathering capabilities of particle, interfacial characteristics, and the particle size effect have been examined by applying and extending Eshelbyu27s classic approach. Secondly, a new method has been developed to calculate the inhomogeneity problem with an arbitrary shaped particle. This method combines boundary integral equations with a sequence of cutting, straining, and welding procedures to numerically acquire stress and strain distribution at an inhomogeneity. Thirdly, an elastic-plastic FEA has been used to investigate the plastic behaviour of the matrix (i.e. plastic relaxation and plastic accumulation) and its effect on the stress transfer and the stress concentration. Fourth, the influence of the volume fraction, the particle shape, the particle clustering, the particle size, and thermally induced residual stresses on deformation characteristics of Al/(SiC)$sb{m P}$ MMCs has been studied by using FEA and applying the concept of the Flower-Watt unit cell. Fifth, the ductility of MMCs has been discussed. It has been found that the major distinctions between MMCs and unreinforced alloys are the mechanisms of the stress transfer to the particles, the enhanced work hardening in the matrix, and the significant contribution of the triaxial stress to the stored strain energy. These characteristics of the MMCs give them their high strength, high stiffness and low ductility. Source: Dissertation Abstracts International, Volume: 56-01, Section: B, page: 0464. Supervisor: Daniel F. Watt. Thesis (Ph.D.)--University of Windsor (Canada), 1994.
机译:本工作旨在通过计算机模拟了解SiC增强铝金属基复合材料(MMC)中的颗粒基体相互作用。首先,通过应用和扩展Eshelby的经典方法,研究了硬质颗粒的基本作用,研究了球形SiC颗粒周围的应力场,颗粒的应力和能量收集能力,界面特性以及颗粒尺寸效应。 。其次,已开发出一种新方法来计算任意形状颗粒的不均匀性问题。该方法将边界积分方程与一系列切削,应变和焊接过程结合在一起,以数值方式获取非均匀性下的应力和应变分布。第三,弹塑性有限元分析已被用于研究基体的塑性行为(即塑性松弛和塑性积累)及其对应力传递和应力集中的影响。第四,研究了体积分数,颗粒形状,颗粒团聚,颗粒尺寸和热诱导残余应力对Al /(SiC)$ sb { rm P} $ MMCs变形特性的影响。有限元分析(FEA)并应用“花瓦”单元电池的概念。第五,已经讨论了MMC的延展性。已经发现,MMC和未增强合金之间的主要区别是应力转移到颗粒上的机制,基体中工作硬化的增强以及三轴应力对存储的应变能的重大贡献。 MMC的这些特性使其具有高强度,高刚度和低延展性。资料来源:国际论文摘要,第56卷,第B节,第0464页。主管:Daniel F. Watt。论文(博士学位)-温莎大学(加拿大),1994。

著录项

  • 作者

    Xu Xiao Qun.;

  • 作者单位
  • 年度 1994
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号