首页> 外文OA文献 >A computational study of torque and volumetric flow rates in a confined rotating fluid and optimum iteration parameters in cavity flow.
【2h】

A computational study of torque and volumetric flow rates in a confined rotating fluid and optimum iteration parameters in cavity flow.

机译:密闭旋转流体中的扭矩和体积流率的计算研究以及腔体流动中的最佳迭代参数。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of laminar steady flow in a stationary cylinder with a rotating top disk was studied numerically. Three governing equations in cylindrical coordinates were solved by the alternating-direction implicit (ADI) method. To characterize the flow, three bulk quantities were selected, namely, the torque coefficient and the primary and secondary volumetric flow rates. Determination of the torque coefficient presented a difficulty because a singularity exists in the velocity gradient at the corner where the rotating disk and the stationary cylinder meet. This problem was overcome by specifying a gap between the disk and cylinder and incorporating this into the boundary conditions. The results obtained using these boundary conditions compared favourably with previous experimental, analytical and computational studies. The relevant parameters for the problem were the rotational Reynolds number, the aspect ratio (the ratio of the height of the cylinder to its radius) and the gap. The ranges of parameters investigated were as follows: Reynolds number from 1 to 10$sp5$; aspect ratio from 0.02 to 3; and gap size from 0.1% to 10% of the cylinder radius. The results indicated that the bulk quantities were dependent on the Reynolds number and the aspect ratio. The torque coefficient was also dependent on the gap, while the volumetric flow rates were only weakly dependent on the gap. For high aspect ratios, the bulk quantities approached constant values. In addition, the effect of iteration parameters on convergence of the cavity problem was studied. The stream function equation was solved by the SOR (successive over-relaxation) method and the vorticity equation by the ADI method. The results obtained were contour plots of the number of iterations required for convergence in the iteration parameter space and graphs of the optimum iteration parameters as functions of Reynolds number and grid spacing. The range of values examined were from Re = 10 on a 21 x 21 grid to Re = 1000 on a 101 x 101 grid. It was found that the iteration parameter space contained four regions: a converging region, an overflow region (associated with numerical instability), an underflow region and a nonconverging region. The optimum iteration parameters were dependent on the Reynolds number and the grid spacing, and a strong coupling between iteration parameters was shown.Dept. of Mechanical, Automotive, and Materials Engineering. Paper copy at Leddy Library: Theses u26 Major Papers - Basement, West Bldg. / Call Number: Thesis1992 .L354. Source: Dissertation Abstracts International, Volume: 54-05, Section: B, page: 2710. Thesis (Ph.D.)--University of Windsor (Canada), 1992.
机译:数值研究了带有旋转顶盘的固定气缸中的层流稳定流动问题。通过交替方向隐式(ADI)方法求解了圆柱坐标中的三个控制方程。为了表征流量,选择了三个体积,即扭矩系数以及初级和次级体积流量。扭矩系数的确定是困难的,因为在旋转盘和固定缸相遇的拐角处的速度梯度中存在奇异性。通过指定圆盘和圆柱体之间的间隙并将其合并到边界条件中,可以解决此问题。使用这些边界条件获得的结果与以前的实验,分析和计算研究相比具有优势。该问题的相关参数是旋转雷诺数,长宽比(圆柱体高度与其半径之比)和间隙。研究的参数范围如下:雷诺数从1到10 $ sp5 $;纵横比从0.02到3;间隙尺寸为圆柱半径的0.1%到10%。结果表明,体积数量取决于雷诺数和纵横比。扭矩系数也取决于间隙,而体积流量仅弱取决于间隙。对于高长宽比,体积接近恒定值。此外,研究了迭代参数对腔问题收敛的影响。通过SOR(连续超松弛)方法求解流函数方程,并通过ADI方法求解涡度方程。获得的结果是迭代参数空间中收敛所需的迭代次数的等高线图,以及作为雷诺数和网格间距的函数的最佳迭代参数图。检查的值范围是从21 x 21网格上的Re = 10到101 x 101网格上的Re = 1000。发现迭代参数空间包含四个区域:收敛区域,溢出区域(与数值不稳定性相关),下溢区域和非收敛区域。最佳迭代参数取决于雷诺数和网格间距,并且显示了迭代参数之间的强耦合。机械,汽车和材料工程系。莱迪图书馆的纸质副本:论文主要论文-西楼地下室。 /电话号码:Thesis1992 .L354。资料来源:国际论文摘要,第54卷,第B节,第2710页。论文(博士学位)-温莎大学(加拿大),1992年。

著录项

  • 作者

    Lang Edward.;

  • 作者单位
  • 年度 1992
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号