In dieser Arbeit werden Edelmetallcluster auf verschiedenen Oberflächen abgeschieden, um deren katalytische Eigenschaften zu untersuchen. Dazu wird eine Ultrahochvakuumapparatur vorgestellt, mit der Cluster mittels Gleichstrom-Magnetronsputtern erzeugt und massenselektiert deponiert werden können. Zur Optimierung der apparativen Betriebsparameter, wie elektrische Potentialdifferenzen und Geometrien der ionenoptischen Bauteile, wurde der experimentelle Aufbau auf ein Simulationsmodell übertragen. Damit kann die örtliche Verteilung der Cluster auf einer Oberfläche bestimmt, Aussagen über die Probenhomogenität gemacht und der Clusterstrom durch Anpassung der elektrostatischen Potentiale optimiert werden. Schließlich werden die präparierten Cluster-Oberflächen mittels Temperatur programmierter Desorption und Reaktion untersucht. Mit einer zuvor erstellten Temperaturkalibrierung und anschließender Betrachtung einer einkristallinen Pt(111)-Oberfläche wird der Versuchsaufbau anhand von Literaturdaten validiert. udDie Untersuchungen zeigen, dass die CO-Oxidation an Pt-Clustern auf hochorientiertem pyrolytischen Graphit nur für eine Massenverteilung der Cluster beobachtet werden kann, während Pt- bzw. Au-Cluster auf Titandioxid auch massenselektiert katalytisch aktiv sind. Mit zunehmender Größe zeigen die Pt-Cluster auf TiO2 veränderte Reaktionskanäle, wohingegen die Untersuchungen an Au-Clustern auf TiO2 eine Verschiebung der CO2-Desorptionstemperatur mit der Clustergröße hinweisen. Diese ist im Vergleich zu einem reinen Au(110)-Einkristall deutlich erhöht. Das unterschiedliche Reaktionsverhalten wird anhand eines geometrischen Clustermmodells diskutiert.
展开▼