首页> 外文OA文献 >Permeability-porosity relationship from a geometrical model of shrinking and lattice Boltzmann and Monte Carlo simulations of flow in two-dimensional pore networks
【2h】

Permeability-porosity relationship from a geometrical model of shrinking and lattice Boltzmann and Monte Carlo simulations of flow in two-dimensional pore networks

机译:二维孔隙网络中流动的收缩和晶格几何模型的渗透率-孔隙率关系Boltzmann和Monte Carlo模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For a broad range of applications, the most important transport property of porous media is permeability. Here we calculate the permeability of pore network approximations of porous media as simple diagenetic or shrinking processes reduces their pore spaces. We use a simple random bond-shrinkage mechanism by which porosity is decreased; a tube is selected at random and its radius is reduced by a fixed factor, the process is repeated until porosity is reduced either to zero or a preset value. For flow simulations at selected porosity levels, we use precise Monte Carlo calculations and the lattice Boltzmann method with a 9-speed model on two-dimensional square lattices. Calculations show a simple power-law behavior, k ∝ φm, where k is the permeability and φ the porosity. The value of m relates strongly to the shrinking process and extension, and hence to the skewness of the pore size distribution, which varies with shrinking, and weakly to pore sizes and shapes. Smooth shrinking produces pore space microstructures resembling the starting primitive material; one value of m suffices to describe k versus φ for any value of porosity. Severe shrinking however produces pore space microstructures that apparently forget their origin; the k-φ curve is only piecewise continuous, different values of m are needed to describe it in the various porosity intervals characterizing the material. The power-law thus is not universal, a well-known fact. An effective pore length or critical pore size parameter, lc, characterizes pore space microstructures at any level of porosity. For severe shrinking lc becomes singular, indicating a change in the microstructure controlling permeability, and thus flow, thus explaining k-φ power-law transitions. Continuation of the various k-φ pieces down to zero permeability reveals pseudo-percolation thresholds φ′c for the porosity of the controlling microstructures. New graphical representations of k/lc2 versus φ-φ′c for the various φ intervals display straight and parallel lines, with a slope of 1. Our results confirm that a universal relationship between k/lc2 and φ should not be discarded.
机译:对于广泛的应用,多孔介质最重要的传输性能是渗透性。在这里,我们计算多孔介质孔隙网络近似的渗透率,因为简单的成岩作用或收缩过程会减少其孔隙空间。我们使用一种简单的随机键收缩机制来降低孔隙率。随机选择一个管并将其半径减小固定倍数,然后重复此过程,直到孔隙率减小到零或预设值为止。对于在选定孔隙度水平下的流动模拟,我们使用精确的蒙特卡洛计算和带有二维正方形晶格的9速度模型的晶格Boltzmann方法。计算显示出简单的幂律行为,k ∝φm,其中k是渗透率,φ是孔隙率。 m的值与收缩的过程和延伸密切相关,因此与孔径分布的偏斜度有关,其随收缩而变化,而与孔径和形状无关。平滑收缩会产生类似于原始原始材料的孔隙空间微结构。 m的一个值足以描述任何孔隙率的k与φ的关系。然而,严重的收缩会产生孔隙空间的微结构,这些微结构显然忘记了它们的起源。 k-φ曲线只是分段连续的,在表征材料的各种孔隙率区间中,需要用不同的m值来描述它。因此,幂律不是普遍的,这是众所周知的事实。有效的孔径或临界孔径参数lc可表征任何孔隙度水平下的孔隙空间微结构。对于严重的收缩,lc变得很奇异,表明控制渗透性的微观结构发生了变化,从而改变了流动性,从而解释了k-φ幂律跃迁。各种k-φ碎片的连续性降低到零渗透率,揭示了控制微结构孔隙度的假渗滤阈值φ'c。对于不同的φ间隔,k / lc2与φ-φ'c的新图形表示以直线和平行线显示,斜率为1。我们的结果证实,不应丢弃k / lc2与φ之间的通用关系。

著录项

  • 作者

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号