首页> 外文OA文献 >Optimization of heat transfer using CFD simulation for concentric helical coil heat exchanger for constant temperature outer wallud
【2h】

Optimization of heat transfer using CFD simulation for concentric helical coil heat exchanger for constant temperature outer wallud

机译:使用CFD模拟优化恒温外壁同心螺旋盘管热交换器的传热效果 ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thermodynamic Optimization in heat transfer of a concentric coiled tube-in-tube heat exchanger under constant wall temperature condition, based on Fluid–Fluid heat transfer is focused in this paper. The parameters which influence the nature of flow in a helical coil are pitch coil diameter, pitch and tube diameter in helical coils. CFD analysis was carried out and their variation on thermal and hydraulic characteristics were analyzed, with varying Reynolds number (hot fluid) and varying tube-to-coil diameter ratios for a given flow velocity of cold fluid. The analysis was carried with Ansys 13.0 Fluent, for turbulent counter-flow with fluid water. The correlations for heat transfer and drop in pressure were analyzed. Thus, Nusselt number and friction factor were also calculated. Graphs were plotted between Nusselt number, friction factor, pressure drop and power loss with Reynolds number. The point where the friction fraction intersects with the Nusselt number is the point where the heat transfer is optimum, corresponding to that Reynolds number. Beyond that Reynolds number, the friction factor decreases rapidly, hence the pressure drop increases and so the power loss also increases. Various velocity and temperature contours were also obtained. Hence, we found the optimum value of Reynolds number for the corresponding tube-to-coil diameter ratios. It thus minimizes the degradation of thermal energy and viscous dissipation of mechanical energy.
机译:本文重点研究了基于流体-流体传热的同心盘绕管式换热器在恒定壁温条件下传热的热力学优化。影响螺旋线圈中的流动性质的参数是螺距线圈直径,螺距和螺线管中的管直径。对于给定的冷流体流速,进行了CFD分析,并分析了它们在热力和水力特性上的变化,其中包括变化的雷诺数(热流体)和不同的管径比。分析是使用Ansys 13.0 Fluent进行的,用于与流体水进行湍流逆流。分析了传热和压力下降的相关性。因此,还计算了努塞尔数和摩擦系数。绘制了努塞尔数,摩擦系数,压降和具有雷诺数的功率损耗之间的图。摩擦分数与努塞尔数相交的点是传热最佳的点,对应于该雷诺数。超过雷诺数,摩擦系数迅速减小,因此压降增加,因此功率损耗也增加。还获得了各种速度和温度轮廓。因此,我们发现了雷诺数对于相应的管对管直径比的最佳值。因此,它将热能的降级和机械能的粘性耗散降至最低。

著录项

  • 作者

    Das S;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号