首页> 外文OA文献 >Image blending using graph cut method for image mosaicing
【2h】

Image blending using graph cut method for image mosaicing

机译:使用图割法进行图像拼接的图像融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this research work, feature based image mosaicing technique and image blending using graph cut method has been proposed. The image mosaicing algorithms can be divided into two broad categories. The direct method and the feature based method. The first is the direct method or the intensity based method and the second one is based on image features. The direct methods need an ambient initialization whereas, Feature based methods does not require initialization during registration. The feature based techniques are followed by the four primary steps: feature extraction, feature matching, transformation model estimation, image resampling and transformation, and image blending. Harris corner detection, SIFT and SURF are such algorithms which are based on the feature detection for the accomplishment of image mosaicing, but the algorithms has their own limitations as well as advantages according to the applications concerned. The proposed method employs the Harris corner detection algorithm for corner detection. The features are detected and the feature descriptors are formed around the corners. The feature descriptors from one image are matched with other image for the best closeness and only those features are kept, rest are discarded. The transformation model is estimated from the features and the image is warped correspondingly. After the image is warped on a common mosaic plane, the last step is to remove the intensity seam. Graph cut method with minimum cut/ maximum flow algorithm is used for the purpose of image blending. A new method for the optimisation of the cut in the graph cut has been proposed in the research paper.
机译:在这项研究工作中,提出了基于特征的图像拼接技术和使用图割方法的图像融合。图像拼接算法可以分为两大类。直接方法和基于特征的方法。第一种是直接方法或基于强度的方法,第二种是基于图像特征的。直接方法需要环境初始化,而基于特征的方法则不需要在注册期间进行初始化。基于特征的技术紧随四个主要步骤:特征提取,特征匹配,变换模型估计,图像重采样和变换以及图像融合。哈里斯角点检测,SIFT和SURF都是基于特征检测来完成图像拼接的算法,但是根据相关应用,该算法有其自身的局限性和优势。该方法采用了Harris角点检测算法进行角点检测。检测特征,并且在拐角处形成特征描述符。一幅图像中的特征描述符与另一幅图像相匹配以获得最佳的贴近度,并且仅保留那些特征,其余的则丢弃。根据特征估计变换模型,并相应地扭曲图像。在公共镶嵌平面上扭曲图像后,最后一步是删除强度接缝。为了实现图像融合,使用了具有最小切割/最大流量算法的图形切割方法。在研究论文中提出了一种新的优化图切割中的切割的方法。

著录项

  • 作者

    Maheshwari Shishir;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号