首页> 外文OA文献 >Study of CORDIC based processing element for digital signal processing algorithms
【2h】

Study of CORDIC based processing element for digital signal processing algorithms

机译:基于CORDIC的数字信号处理算法处理元件的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a high demand for the efficient implementation of complex arithmetic operations in many Digital Signal Processing (DSP) algorithms. The COordinate Rotation DIgital Computer (CORDIC) algorithm is suitable to be implemented in DSP algorithms since its calculation for complex arithmetic is simple and elegant. Besides, since it avoids using multiplications, adopting the CORDIC algorithm can reduce the complexity. Here, in this project CORDIC based processing element for the construction of digital signal processing algorithms is implemented. This is a flexible device that can be used in the implementation of functions such as Singular Value Decomposition (SVD), Discrete Cosine Transform (DCT) as well as many other important functions. It uses a CORDIC module to perform arithmetic operations and the result is a flexible computational processing element (PE) for digital signal processing algorithms. To implement the CORDIC based architectures for functions like SVD and DCT, it is required to decompose their computations in terms of CORDIC operations. SVD is widely used in digital signal processing applications such as direction estimation, recursive least squares (RLS) filtering and system identification. Two different Jacobi-type methods for SVD parallel computation are usually considered, namely the Kogbetliantz (two-sided rotation) and the Hestenes (one- sided rotation) method. Kogbetliantz’s method has been considered, because it is suitable for mapping onto CORDIC array architecture and highly suitable for parallel computation. Here in its implementation, CORDIC algorithm provides the arithmetic units required in the processing elements as these enable the efficient implementation of plane rotation and phase computation. Many fundamental aspects of linear algebra rely on determining the rank of a matrix, making the SVD an important and widely used technique. DCT is one of the most widely used transform techniques in digital signal processing and it computation involves many multiplications and additions. The DCT based on CORDIC algorithm does not need multipliers. Moreover, it has regularity and simple architecture and it is used to compress a wide variety of images by transferring data into frequency domain. These digital signal-processing algorithms are used in many applications. The purpose of this thesis is to describe a solution in which a conventional CORDIC system is used to implement an SVD and DCT processing elements. The approach presented combines the low circuit complexity with high performance.
机译:对于在许多数字信号处理(DSP)算法中有效实现复杂算术运算的需求很高。坐标旋转数字计算机(CORDIC)算法适用于DSP算法,因为其复杂算法的计算简单而优雅。此外,由于避免了乘法运算,采用CORDIC算法可以降低复杂度。这里,在该项目中,实现了用于构建数字信号处理算法的基于CORDIC的处理元件。这是一种灵活的设备,可用于实现诸如奇异值分解(SVD),离散余弦变换(DCT)等功能以及许多其他重要功能。它使用CORDIC模块执行算术运算,结果是用于数字信号处理算法的灵活计算处理元件(PE)。为了为诸如SVD和DCT之类的功能实现基于CORDIC的体系结构,需要根据CORDIC操作分解其计算。 SVD广泛用于数字信号处理应用中,例如方向估计,递归最小二乘(RLS)滤波和系统识别。通常考虑用于SVD并行计算的两种不同的Jacobi型方法,即Kogbetliantz(双向旋转)和Hestenes(双向旋转)方法。之所以考虑使用Kogbetliantz的方法,是因为它适合映射到CORDIC阵列架构,并且非常适合于并行计算。在此,CORDIC算法在其实现中提供了处理元素中所需的算术单元,因为这些元素使平面旋转和相位计算得以有效实现。线性代数的许多基本方面都取决于确定矩阵的秩,从而使SVD成为重要且广泛使用的技术。 DCT是数字信号处理中使用最广泛的变换技术之一,其计算涉及许多乘法和加法。基于CORDIC算法的DCT不需要乘法器。而且,它具有规则性和简单的体系结构,并且通过将数据传输到频域来用于压缩各种图像。这些数字信号处理算法被用于许多应用中。本文的目的是描述一种解决方案,其中使用常规的CORDIC系统来实现SVD和DCT处理元件。提出的方法将低电路复杂性与高性能相结合。

著录项

  • 作者

    S Syam Babu;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号