首页> 外文OA文献 >Stator Inter Turn Short Circuit Fault Diagnosis in Three Phase Induction Motor Using Neural Networks
【2h】

Stator Inter Turn Short Circuit Fault Diagnosis in Three Phase Induction Motor Using Neural Networks

机译:基于神经网络的三相异步电动机定子匝间短路故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In induction machine a number of faults occur namely bearing and insulation related faults, stator winding and rotor related faults. Among these, stator inter-turn fault is one of the most common faults.Therefore, this work deals with the diagnosis of inter turn short circuit fault in stator winding of an induction machine. These incipient faults need to be identified and cleared as soon as possible to reduce failures as well as maintenance cost.Conventional methods are time taking and require exact mathematical modelling of the machine. However, due to ageing effects the mathematical model has to be modified from time to time so that one can employ soft computing methods which are suitable in the situation where dynamics of the system is less understood such as the fault dynamics of an induction machine. In this thesis, one of the very popular soft computing techniques called artificial neural network is employed to diagnose the stator inter turn short-circuit fault in a three phase squirrel cage induction machine. Firstly, a multilayer perceptron neural network (MLPNN) has been applied for solving the above fault diagnosis problem.The root mean square error was plotted and the least value was found to be 0.065. In view of improving the training performance, a radial basis function neural network (RBFNN) with the same configuration as that of back propagation algorithm and Discrete Wavelet Transform was designed. Then the results of both the artificial neural networks and DWT were compared and it was found that RBFNN outperforms both the MLPNN and DWT based fault diagnosis approaches applied to the induction machine.
机译:在感应电机中,会发生许多故障,即与轴承和绝缘相关的故障,与定子绕组和转子相关的故障。其中,定子匝间故障是最常见的故障之一,因此,本工作旨在对感应电机定子绕组匝间短路故障进行诊断。这些早期故障需要尽快识别和清除,以减少故障并降低维护成本。传统方法耗时并且需要对机器进行精确的数学建模。但是,由于老化的影响,数学模型必须不时进行修改,以便人们可以采用软计算方法,这种方法适用于对系统动力学(例如感应电机的故障动力学)了解较少的情况。本文采用了一种非常流行的称为人工神经网络的软计算技术来诊断三相鼠笼感应电机的定子匝间短路故障。首先,将多层感知器神经网络(MLPNN)用于解决上述故障诊断问题,绘制均方根误差,发现最小值为0.065。为了提高训练效果,设计了与反向传播算法和离散小波变换具有相同配置的径向基函数神经网络(RBFNN)。然后比较了人工神经网络和DWT的结果,发现RBFNN优于应用于感应电机的基于MLPNN和DWT的故障诊断方法。

著录项

  • 作者

    Sinhal Prachi;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号