首页> 外文OA文献 >A study on neural network based system identification with application to heating, ventilating and air conditioning (hvac)system
【2h】

A study on neural network based system identification with application to heating, ventilating and air conditioning (hvac)system

机译:基于神经网络的系统识别研究及其在供暖通风空调系统中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent efforts to incorporate aspects of artificial intelligence into the design and operation of automatic control systems have focused attention on techniques such as fuzzy logic, artificial neural networks, and expert systems. Although LMS algorithm has been considered to be a popular method of system identification but it has been seen in many situations that accurate system identification is not achieved by employing this technique. On the other hand, artificial neural network (ANN) has been chosen as a suitable alternative approach to nonlinear system identification due to its good function approximation capabilities i.e. ANNs are capable of generating complex mapping between input and output spaces. Thus, ANNs can be employed for modeling of complex dynamical systems with reasonable degree of accuracy. The use of computers for direct digital control highlights the recent trend toward more effective and efficient heating, ventilating, and air-conditioning (HVAC) control methodologies. The HVAC field has stressed the importance of self learning in building control systems and has encouraged further studies in the integration of optimal control and other advanced techniques into the formulation of such systems. In this thesis we describe the functional link artificial neural network (FLANN), Multi-Layer Perceptron (MLP) with Back propagation (BP) and MLP with modified BP called the emotional BP and Neuro fuzzy approaches for the HVAC System Identification. The thesis describes different architectures together with learning algorithms to build neural network based nonlinear system identification schemes such as Multi-Layer Perceptron (MLP) neural network, Functional Link Artificial Neural Network (FLANN) and ANFIS structures. In the case of MLP used as an identifier, different structures with regard to hidden layer selection and nodes in each layer have been considered. It may be noted that difficulty lies in choosing the number of hidden layers for achieving a correct topology of MLP neural identifier. To overcome this, in the FLANN identifier hidden layers are not required whereas the input is expanded by using trigonometric polynomials i.e. with cos(nπu) and sin(nπu), for n=0,1,2,…. The above ANN structures MLP, FLANN and Neuro-fuzzy (ANFIS Model) have been extensively studied. ud
机译:将人工智能方面纳入自动控制系统的设计和操作的最新努力集中在诸如模糊逻辑,人工神经网络和专家系统之类的技术上。尽管LMS算法被认为是一种流行的系统识别方法,但是在许多情况下,使用该技术无法实现准确的系统识别。另一方面,由于其良好的函数逼近能力,即人工神经网络(ANN)能够在输入和输出空间之间生成复杂的映射,因此已被选为非线性系统识别的合适替代方法。因此,人工神经网络可以以合理的准确度用于复杂动力系统的建模。使用计算机进行直接数字控制突显了近来趋势,即朝着更加有效和高效的供暖,通风和空调(HVAC)控制方法发展的趋势。 HVAC领域已经强调了在建筑物控制系统中进行自我学习的重要性,并鼓励在将最佳控制和其他先进技术集成到此类系统的过程中进行进一步的研究。在本文中,我们描述了功能链接人工神经网络(FLANN),带有反向传播的多层感知器(MLP)(BP)和带有修改后的BP的MLP,称为情感BP和神经模糊方法,用于HVAC系统识别。本文描述了不同的体系结构以及学习算法,以构建基于神经网络的非线性系统识别方案,例如多层感知器(MLP)神经网络,功能链接人工神经网络(FLANN)和ANFIS结构。在将MLP用作标识符的情况下,已经考虑了有关隐藏层选择和每层中节点的不同结构。可以注意到,困难在于选择隐藏层的数量以实现MLP神经标识符的正确拓扑。为了克服这个问题,在FLANN标识符中,不需要隐藏层,而通过使用三角多项式来扩展输入,即对于n = 0,1,2,…,使用cos(nπu)和sin(nπu)。上面的神经网络结构MLP,FLANN和神经模糊(ANFIS模型)已被广泛研究。 ud

著录项

  • 作者

    Bonala Sathyam;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号