首页> 外文OA文献 >Fabrication of Chemical Vapor Deposition (CVD) Setup Preparation of Copper Oxide (CuO) -CdX (X= Se, S) Nanoparticles Decorated Core-Shell Heterostructure
【2h】

Fabrication of Chemical Vapor Deposition (CVD) Setup Preparation of Copper Oxide (CuO) -CdX (X= Se, S) Nanoparticles Decorated Core-Shell Heterostructure

机译:化学气相沉积(CVD)的制备和氧化铜(CuO)-CdX(X = Se,S)纳米颗粒的制备,可修饰核壳结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The goal of this project is to fabricate a low cost chemical vapor deposition (CVD) setup and synthesize hybrid nanomaterials i.e. copper oxide (CuO)-CdX (X=Se, S) nanoparticles decorated core-shell heterostructure. The synthesized hybrid nanomaterials have been fabricatedudinto a device (photodetector) for the measurement of current-voltage characteristics in dark and under UV illumination. Furthermore, the growth model for the formation of core-shell heterostructure has also been discussed in this project.udChapter-I narrates about the fundamentals of materials, nanomaterials and hybrid nanomaterials. In this chapter, the importance, properties, application of nanomaterials have been outlined. Moreover, the properties and morphology and corresponding application are highlydependent on the synthesis methods. Chemical vapor deposition (CVD) technique is found be one of versatile among all other preparation methods. The motivation by addressing the challenges have been discussed thoroughly.udChapter-II describes the fabrication of a low cost CVD setup. For the fabrication of CVD setup, a three-zone horizontal furnace, reaction tube, a rotary van pump and three mass flow meters have been procured. A liquid precursor handling system and a reaction chamber which has fitted with two couplings have been designed. All these subcomponents have been assembled and integrated into a single unit CVD setup.udChapter-III discusses about the detailed experimental procedure for the synthesis of CuO nanowires-CdX (X=Se, S) nanoparticles decorated core-shell heterostructure. For the synthesis of CuO-CdX (X= Se, S) heterostructure nanomaterials, CuO nanowires have been synthesizedfirst by using thermal oxidation of Cu foil in air at 5000C for 5 hours. These CuO nanowires grown on cu foils have been used for the synthesis of heterostructure by using the fabricated CVD. All these materials i.e. CuO nanowires, CuO-CdSe & CuO-CdS heterostructure have beenudcharacterized by field emission electron microscopy (FESEM) attached with energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), transmission electron microscopy (TEM) attached with high resolution TEM (HRTEM) and selected area diffraction pattern (SAED), RAMAN spectroscopy & UV-Vis spectroscopy. Moreover, these materials have been fabricated intoa photodetector for the measurement of current-voltage characteristics in dark and under UV illumination.udChapter-IV describes the detailed material characterization of CuO-CdSe heterostructureudnanomaterials. The FESEM image of CuO nanowires reveals the formation CuO nanowiresudstretching out of the surface. The surface of CuO nanowires is very much smooth and impurityudfree. Formation of beaded like structures of CdSe is found to be attached intermittently on the surface of CuO nanowires. The presence of Cd, Se elements in the materials has been confirmed by EDS. However, the formation of these bead structure is well confirmed TEM along with the formation of core-shell heterostructure. XRD, HRTEM, SAED pattern confirms the crystallineudnature of the materials. Raman spectroscopy further confirms the presence of CdSe in the CVD synthesized materials. Using UV-Vis spectroscopy measurement the band gap is found to be ~2.2eV for CuO nanowires and 3.96eV for CuO-CdSe heterostructure. udChapter-V discusses about the material characterization of CuO-CdS nanomaterials.udFrom FESEM image, the rough surface of CuO-CdS is found by FESEM observation which is attributed to the deposition of CdS nanoparticles thoroughly on to the surface of CuO nanowires during preparation of CuO-CdS core-shell structure by CVD process. The presence of Cd, S elements in the materials has been confirmed by EDS. The formation of core-shell heterostructure has been well verified by TEM. The crystalline natures of the materials have been confirmed by XRD, HRTEM, and SAED pattern. Raman spectroscopy further confirms the presence of CdS in the CVD synthesized materials. The band gap is found to be ~3.73eV for CuO-CdS heterostructure as measured by UV-Vis spectroscopy. udChapter-VI discusses about some general trends in growth mechanism of hybrid nanomaterials and a probable growth mechanism of the present research work has been suggested as deduced from experimental characterization. The probable growth mechanism for CuO-CdSe is found to be gas phase adsorption, whereas surface diffusion and gas phaseadsorption growth mechanism for CuO-CdS has been suggested. However, the exact growth mechanism is yet to be established that needs further investigation in detail. Furthermore, the current-voltage characteristics of the fabricated photodetector have been measured by Keithley source meter 2400. The measured current for the CuO is 1.4μA at bias voltage 3 Volt. Similarly, the dark current measured for the CuO-CdSe is 11 μA. However, the current increased to 33μA under UV illumination at the biasing 3V. For CuO-CdS, the current is found to be 10.8μA and increased to 23.8 under UV illumination at the biasing 5V. The increase in photocurrent attribute because of the effective charge separation in electron-hole in the heterojunction, which has been discussed thoroughly in the chapter by using band diagram.ud
机译:该项目的目标是制造低成本的化学气相沉积(CVD)装置并合成杂化纳米材料,即装饰有核-壳异质结构的氧化铜(CuO)-CdX(X = Se,S)纳米颗粒。合成的杂化纳米材料已经被制造到用于在黑暗和紫外线照射下测量电流-电压特性的装置(光电探测器)中。此外,在该项目中还讨论了形成核-壳异质结构的生长模型。 ud第一章讲述了材料,纳米材料和杂化纳米材料的基本原理。在这一章中,概述了纳米材料的重要性,性质和应用。此外,性质和形态以及相应的应用高度依赖于合成方法。发现化学气相沉积(CVD)技术是所有其他制备方法中的通用技术之一。解决挑战的动机已经进行了彻底的讨论。 ud第二章介绍了一种低成本CVD装置的制造。为了制造CVD设备,已购买了三区卧式炉,反应管,旋转搬运车泵和三个质量流量计。设计了液体前驱物处理系统和配有两个接头的反应室。所有这些子组件均已组装并集成到单个CVD装置中。 udChapter-III讨论了合成装饰有芯-壳异质结构的CuO纳米线-CdX(X = Se,S)纳米粒子的详细实验程序。为了合成CuO-CdX(X = Se,S)异质结构纳米材料,首先通过使用Cu箔在空气中于5000℃下热氧化5小时来合成CuO纳米线。这些在铜箔上生长的CuO纳米线已通过使用制造的CVD用于合成异质结构。所有这些材料,即CuO纳米线,CuO-CdSe和CuO-CdS异质结构均已通过附有能量色散光谱仪(EDS),X射线衍射(XRD),透射电子显微镜(TEM)的场发射电子显微镜(FESEM)进行了表征。附有高分辨率TEM(HRTEM)和选定区域衍射图(SAED),拉曼光谱和UV-Vis光谱。此外,这些材料已被制成光电检测器,用于在黑暗和紫外线照射下测量电流-电压特性。 ud第四章介绍了CuO-CdSe异质结构 udnano材料的详细材料表征。 CuO纳米线的FESEM图像揭示了CuO纳米线的形成从表面伸出。 CuO纳米线的表面非常光滑且无杂质。发现CdSe的珠状结构的形成断续地附着在CuO纳米线的表面上。 EDS已确认材料中Cd,Se元素的存在。但是,这些磁珠结构的形成以及核-壳异质结构的形成都得到了TEM的充分证实。 XRD,HRTEM,SAED图案确认了材料的晶格/结晶度。拉曼光谱进一步证实了CVD合成材料中CdSe的存在。使用UV-Vis光谱测量,发现CuO纳米线的带隙为〜2.2eV,CuO-CdSe异质结构的带隙为3.96eV。 udChapter-V讨论了CuO-CdS纳米材料的材料表征。 ud从FESEM图像中,通过FESEM观察发现了CuO-CdS的粗糙表面,这归因于CdS纳米颗粒在沉积过程中彻底沉积在CuO纳米线表面CVD法制备CuO-CdS核-壳结构EDS已确认材料中Cd,S元素的存在。 TEM已经很好地验证了核-壳异质结构的形成。通过XRD,HRTEM和SAED图案确认了材料的晶体性质。拉曼光谱进一步证实了CVD合成材料中CdS的存在。通过UV-Vis光谱法测量,发现CuO-CdS异质结构的带隙为〜3.73eV。 第六章讨论了杂化纳米材料生长机理的一些一般趋势,并从实验表征中得出了本研究工作的可能生长机理。发现CuO-CdSe可能的生长机理是气相吸附,而有人提出了CuO-CdS的表面扩散和气相吸附生长机理。但是,确切的增长机制尚未建立,需要进一步详细研究。此外,已用吉时利源表2400测量了制成的光电探测器的电流-电压特性。在偏置电压3伏特下,CuO的测量电流为1.4μA。同样,CuO-CdSe的暗电流为11μA。但是,在偏置3V的紫外线照射下,电流增加到33μA。对于CuO-CdS,发现电流为10.8μA,并在5V偏压下在紫外线照射下增加至23.8μA。光电流属性的增加是由于异质结中电子空穴中有效的电荷分离所致,本章已使用能带图对此进行了详细讨论。 ud

著录项

  • 作者

    Das Bamadev;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号