首页> 外文OA文献 >Melting and Solidification of Binary Alloy Subjected to Cyclic Temperature and Heat Flux Boundary Condition
【2h】

Melting and Solidification of Binary Alloy Subjected to Cyclic Temperature and Heat Flux Boundary Condition

机译:循环温度和热通量边界条件下二元合金的熔化与凝固

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An enthalpy based Fixed-Grid method is developed for modeling phase change in a binary alloy subjected to periodic boundary condition. A two-dimensional model is developed for the melting and solidification cycle a gallium-tin (eutectic) alloy. The model also includes the natural convection effect in the liquid zone. Two cases are studied: (1) one of the boundaries is subjected to periodic variation of the temperature and (2) the same boundary subjected to periodic variation of heat flux. An enthalpy based fixed grid approach is used to solve the energy equation. The SIMPLER algorithm of Patankar is used to calculate the flow variables from continuity and momentum equations. The Tri-Diagonal-Matrix-Algorithm is used to solve the algebraic discrete equations. The melting and solidification fronts are captured implicitly by calculating the latent heat content at each control volume. An iterative update procedure is developed to update the latent heat content at each control volume. The proposed methodology is very simple to implement as the grid size is fixed. Since the grid size is fixed, hence the computational domain is also fixed. The domain is discretized once at the beginning of computation. The results obtained using the proposed enthalpy method is being validated with the available experimental results for melting of pure gallium. It is seen that, the solidification front takes a rather more regular shape, than the melting front. This is because of the rapid dissipation of temperature gradients in the melt. Hence, the movement of the solidification front is not modified by the fluid flow.
机译:开发了一种基于焓的固定网格方法,用于模拟二元合金在周期性边界条件下的相变。建立了一个二维模型,用于镓锡(共晶)合金的熔化和凝固循环。该模型还包括液体区域中的自然对流效应。研究了两种情况:(1)其中一个边界经受温度的周期性变化,(2)同一边界经受热通量的周期性变化。基于焓的固定网格方法用于求解能量方程。 Patankar的SIMPLER算法用于根据连续性和动量方程式计算流量变量。 Tri-Diagonal-Matrix-Algorithm用于求解代数离散方程。通过计算每个控制量处的潜热含量,可以隐式捕获熔化和凝固前沿。开发了迭代更新程序以更新每个控制量处的潜热含量。由于网格大小是固定的,因此所提出的方法非常易于实现。由于网格大小是固定的,因此计算域也是固定的。在计算开始时,将域离散一次。使用拟议的焓法获得的结果已通过纯镓熔化的现有实验结果得到验证。可以看出,凝固前沿比熔化前沿具有更规则的形状。这是因为熔体中温度梯度的快速消散。因此,凝固前沿的运动不会被流体流动改变。

著录项

  • 作者

    Mishra Subhransu Kumar;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号