首页> 外文OA文献 >Improved query plans for unnesting SQL nested queries
【2h】

Improved query plans for unnesting SQL nested queries

机译:改进的查询计划,用于取消嵌套SQL嵌套查询

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The SQL language allows users to express queries that have nested subqueries in them. Optimization of nested queries has received considerable attention over the last few years. The first algorithm for unnesting nested queries was Kim's algorithm, but this technique had a COUNT bug for JA type queries. Later few researchers gave more general strategies to avoid the COUNT bug. Finally to all this M. Muralikrishna modified Kim's algorithm so that it avoids the COUNT bug. The modified algorithm may be used when it is more e±cient than the general strategy. In addition, he presented a couple of enhancements that pre-compute aggregates and evaluate joins and outer joins in a top down order. These enhancements eliminated Cartesian products when certain correlation predicates are absent and enabled us to employ Kim's method for more blocks. Apart from this he proposed the Integrated algorithm for generating query plans for a given input query. In this thesis we have given a new solution for implementing the Kim's modified algorithm of unnesting nested queries and this also avoids the COUNT bug convincingly. Integrated algorithm generates °aws query plans, which has been modified in this thesis. We have also shown experimental results proving one query plan among the all other as computationally better one. These computations are in terms of elapsed time. We have carried out experiments for di®erent data sets of varying sizes from 100 to 1000 tuples in each relation. These results are taken as average of some possible iterative execution of each query plan. Finally, we incorporate the above improved merits into a new unnesting algorithm.
机译:SQL语言允许用户表达其中嵌套了子查询的查询。在过去的几年中,嵌套查询的优化受到了广泛的关注。用于取消嵌套查询的第一种算法是Kim的算法,但是该技术对于JA类型的查询存在COUNT错误。后来,很少有研究人员提出更通用的策略来避免COUNT错误。最后,M。Muralikrishna修改了Kim的算法,从而避免了COUNT错误。当修改的算法比一般策略更有效时,可以使用它。此外,他提出了一些增强功能,这些功能可以按自上而下的顺序预先计算聚合并评估联接和外部联接。当某些相关谓词不存在时,这些增强功能消除了笛卡尔积,并使我们能够将Kim的方法用于更多的块。除此之外,他提出了用于为给定输入查询生成查询计划的集成算法。在本文中,我们为实现Kim的嵌套嵌套查询的改进算法提供了一种新的解决方案,这也令人信服地避免了COUNT错误。集成算法生成了aws查询计划,本文对此进行了修改。我们还显示了实验结果,该结果证明了一种查询计划,在其他所有计划中都是计算上更好的计划。这些计算是根据经过的时间。我们已经针对每个关系中大小从100至1000元组的不同数据集进行了实验。这些结果被视为每个查询计划的某些可能迭代执行的平均值。最后,我们将上述改进的优点整合到新的嵌套算法中。

著录项

  • 作者

    M Sathish Kumar;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号