首页> 外文OA文献 >Analysis of Genomic and Proteomic Signals Using Signal Processing and Soft Computing Techniques
【2h】

Analysis of Genomic and Proteomic Signals Using Signal Processing and Soft Computing Techniques

机译:使用信号处理和软计算技术分析基因组和蛋白质组信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bioinformatics is a data rich field which provides unique opportunities to use computational techniques to understand and organize information associated with biomolecules such as DNA, RNA, and Proteins. It involves in-depth study in theudareas of genomics and proteomics and requires techniques from computer science,statistics and engineering to identify, model, extract features and to process data for analysis and interpretation of results in a biologically meaningful manner.In engineering methods the signal processing techniques such as transformation,filtering, pattern analysis and soft-computing techniques like multi layer perceptron(MLP) and radial basis function neural network (RBFNN) play vital role to effectively resolve many challenging issues associated with genomics and proteomics.udIn this dissertation, a sincere attempt has been made to investigate on some challenging problems of bioinformatics by employing some efficient signal and soft computing methods. Some of the specific issues, which have been attempted are protein coding region identification in DNA sequence, hot spot identification in protein, prediction of protein structural class and classification of microarray gene expression data. The dissertation presents some novel methods to measure and to extract features from the genomic sequences using time-frequency analysis and machine intelligence techniques.The problems investigated and the contribution made in the thesis are presented here in a concise manner. The S-transform, a powerful time-frequency representation technique, possesses superior property over the wavelet transform and short time Fourier transform as the exponential function is fixed with respect to time axis while the localizing scalable Gaussian window dilates and translates. The S-transform uses an analysis window whose width is decreasing with frequency providing a frequency dependent resolution. The invertible property of S-transform makes it suitable for time-band filtering application. Gene prediction and protein coding region identification have been always a challenging task in computational biology,especially in eukaryote genomes due to its complex structure. This issue is resolved using a S-transform based time-band filtering approach by localizing the period-3 property present in the DNA sequence which forms the basis for the identification.Similarly, hot spot identification in protein is a burning issue in protein science due to its importance in binding and interaction between proteins. A novel S-transform based time-frequency filtering approach is proposed for efficient identification of the hot spots. Prediction of structural class of protein has been a challenging problem in bioinformatics.A novel feature representation scheme is proposed to efficientlyudrepresent the protein, thereby improves the prediction accuracy. The high dimension and low sample size of microarray data lead to curse of dimensionality problem which affects the classification performance.In this dissertation an efficient hybrid feature extraction method is proposed to overcome the dimensionality issue and a RBFNNudis introduced to efficiently classify the microarray samples.
机译:生物信息学是一个数据丰富的领域,它提供了独特的机会来使用计算技术来理解和组织与生物分子(如DNA,RNA和蛋白质)相关的信息。它涉及在基因组学和蛋白质组学领域的深入研究,需要计算机科学,统计学和工程学领域的技术来识别,建模,提取特征并处理数据,以生物学上有意义的方式分析和解释结果。信号处理技术(例如变换,滤波,模式分析以及诸如多层感知器(MLP)和径向基函数神经网络(RBFNN)的软计算技术)在有效解决与基因组学和蛋白质组学相关的许多难题方面发挥着至关重要的作用。本论文通过采用有效的信号和软计算方法,对生物信息学的一些具有挑战性的问题进行了真诚的尝试。已尝试的一些具体问题是DNA序列中蛋白质编码区的鉴定,蛋白质中热点的鉴定,蛋白质结构分类的预测以及微阵列基因表达数据的分类。本文提出了一些利用时频分析和机器智能技术从基因组序列中进行特征量测和提取的新方法。在此简要介绍了本文要研究的问题和所做的贡献。 S变换是一种强大的时频表示技术,它具有相对于小波变换和短时傅立叶变换的优越性能,因为相对于时间轴的指数函数是固定的,而局部可缩放的高斯窗口则进行了扩展和平移。 S变换使用分析窗口,其宽度随频率而减小,从而提供了频率相关的分辨率。 S变换的可逆特性使其适合于时带滤波应用。基因预测和蛋白质编码区的鉴定一直是计算生物学中一项具有挑战性的任务,尤其是由于其复杂的结构,在真核生物基因组中尤其如此。使用基于S变换的时带过滤方法可以解决此问题,方法是定位存在于DNA序列中的period-3属性,这是鉴定的基础。同样,蛋白质中的热点鉴定也是蛋白质科学中的一个亟待解决的问题其在蛋白质之间的结合和相互作用中的重要性。为了有效地识别热点,提出了一种基于S变换的时频滤波方法。蛋白质结构类别的预测一直是生物信息学中一个具有挑战性的问题。提出了一种新颖的特征表示方案来有效地代表蛋白质,从而提高了预测精度。微阵列数据的高维和低样本量导致了维数问题的困扰,从而影响了分类的性能。 。

著录项

  • 作者

    Sahu Sitanshu Sekhar;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号