首页> 外文OA文献 >Microwire crossbar arrays for chemical, mechanical, and thermal stimulation of cells
【2h】

Microwire crossbar arrays for chemical, mechanical, and thermal stimulation of cells

机译:Microwire交叉开关阵列,用于化学,机械和热刺激细胞

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the past two decades, miniaturized biophysical tools, referred to as lab-on-a-chip or micro-total-analysis-systems, have become a vivid field of interdisciplinary research. This development is owed to the fact that these tools promise lower sample and time consumption and higher parallelization than classical wet-lab experiments. At the same time, these tools can offer a resolution that is often impossible to achieve with classical probe-based techniques. In this context, the present thesis investigates the use of microwire crossbar arrays to deliver chemical, mechanical, and thermal stimuli to networks of biological cells.The first part of this work considers magnetic microparticles as transducers of chemical and mechanical stimuli. To this end, a chip-based approach to exert precise control over these particles is examined. Here, microwire crossbar arrays are used as miniaturized electromagnets to generate highly localized magnetic fields. These fields, in turn, are used to exert precise control over the particles at subcellular resolution. In order to ensure successful delivery of the particles, simple but efficient protocols for the transport of particles are investigated. In the application of these protocols, a new approach to deploy and control individual particles on-chip is introduced. This method effectively cancels the risk of undesired delivery to another than the target cell allowing reliable and controlled stimulation of single cells. In order to demonstrate the excellent control over the particle, an analyticalsimulation of the system is compared to experimental data. The latter is obtained using an image processing algorithm that allows for particle detection at submicron resolution.In the second part, the parallel generation of magnetic and dielectrophoretic forces is investigated as a means to avoid particle immobilization due to adhesive particle/surface interactions. Using finite elements simulations, the magnetic and electric fields generated by the arrays are analyzed. The theoretical results from these simulationsare then compared to experimental data obtained from individual particles levitated on the chip. Finally, field configurations that allow full three-dimensional control over the particle are presented. These results demonstrate for the first time the precise three-dimensional actuation of a single particle using only in-plane actuators. As anon-chip version of magnetic tweezers, this method poses a versatile tool to a number of biophysical investigations.The last part of the thesis examines microwire crossbar arrays as a tool for the thermal stimulation of cells cultured on the chip. In particular, stimuli of high thermal energy are applied via resistive heating of the microwires. The technique is then examined as a possible chip-based method to generate highly resolved lesions in biologicalnetworks. As an exemplary functional cell network cardiomyocyte-like HL-1 cells are grown on the chips. The localization of the lesion is examined using fluorescent staining methods. The functionality of the network before and after the lesion is analyzed via Ca2+ imaging. Here, correlation and frequency analyses are used to give an insight into the signal propagation in the network. Finally, the dissection of functionally intact subnetworks of less than 100 cells is demonstrated. Overall, this thesis illustrates the applicability of microwire arrays as versatile platforms in the chip-based application of chemical, mechanical, and thermal stimuli. The three-dimensional actuation of particles presented in the first two parts allows for the parallel conduction of a number of new biophysical studies. The presented method for the thermal introduction of lesions allows for a significantly higher resolution than current methods. At the same time, it offers simple fabrication and straight-forward implementation into current on-chip cell analysis systems.
机译:在过去的二十年中,微型生物物理工具(称为芯片实验室或微观总体分析系统)已成为跨学科研究的活跃领域。之所以出现这种发展,是因为与传统的湿实验室实验相比,这些工具具有更低的样品和时间消耗以及更高的并行度。同时,这些工具可以提供通常基于经典探针的技术无法实现的分辨率。在此背景下,本论文研究了使用微线交叉开关阵列将化学,机械和热刺激传递至生物细胞网络。这项工作的第一部分将磁性微粒视为化学和机械刺激的换能器。为此,研究了一种基于芯片的方法来对这些颗粒进行精确控制。在这里,微线交叉开关阵列被用作小型化的电磁体,以产生高度局部化的磁场。这些场又用于以亚细胞分辨率对颗粒进行精确控制。为了确保成功递送颗粒,研究了用于颗粒运输的简单但有效的方案。在这些协议的应用中,引入了一种在芯片上部署和控制单个粒子的新方法。该方法有效地消除了不希望的递送至靶细胞之外的细胞的风险,从而实现了对单细胞的可靠且受控的刺激。为了证明对粒子的出色控制,将系统的模拟分析与实验数据进行了比较。后者是使用图像处理算法获得的,该算法允许以亚微米分辨率检测颗粒。在第二部分中,研究了平行产生磁和介电泳力作为避免由于粘合剂颗粒/表面相互作用而引起的颗粒固定的方法。使用有限元模拟,分析了阵列产生的磁场和电场。然后将这些模拟的理论结果与从悬浮在芯片上的单个颗粒获得的实验数据进行比较。最后,提出了允许对粒子进行完全三维控制的场配置。这些结果首次证明了仅使用面内致动器对单个粒子进行精确的三维致动。作为磁镊子的非芯片版本,这种方法为许多生物物理研究提供了一种多功能的工具。本文的最后一部分研究了微线交叉开关阵列,作为热刺激芯片上培养的细胞的工具。特别地,经由微丝的电阻加热施加高热能的刺激。然后将该技术作为可能的基于芯片的方法进行检查,以在生物网络中生成高度分辨的病变。作为示例性功能细胞网络,在芯片上生长心肌样HL-1细胞。使用荧光染色方法检查病变的位置。通过Ca2 +成像分析病变前后的网络功能。在这里,使用相关性和频率分析来深入了解网络中的信号传播。最后,展示了少于100个单元的功能完整的子网络的解剖。总体而言,本文说明了微线阵列作为通用平台在基于芯片的化学,机械和热刺激应用中的适用性。在前两个部分中对粒子进行三维驱动可以并行进行许多新的生物物理研究。所提出的用于热引入损伤的方法允许比当前方法显着更高的分辨率。同时,它提供了简单的制造方法,并且可以直接应用于当前的片上细胞分析系统。

著录项

  • 作者

    Rinklin Philipp;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号