首页> 外文OA文献 >A hybrid mixed finite element scheme for the compressible Navier-Stokes equations and adjoint-based error control for target functionals
【2h】

A hybrid mixed finite element scheme for the compressible Navier-Stokes equations and adjoint-based error control for target functionals

机译:可压缩Navier-Stokes方程的混合混合有限元格式和目标函数的基于伴随的误差控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The importance of computer-based modeling in technical and industrial use is evident. Especially the aerodynamic industry has a huge interest in reliable and robust methods for accurately computing aerodynamic flows. These flows are in general described by partial differential equations of mixed elliptic-hyperbolic type, and as it is usually not possible to solve these equations exactly, one has to rely on numerical methods. Industrial state-of-the-art codes are usually based on low-order approximations, meaning that the underlying algorithm has a low order of consistency with the partial differential equation. This results in very robust methods that have become extremely efficient and therefore extremely popular. However, it is assumed that methods having a higher order of consistency can outperform the before-mentioned methods. We thus investigate in this work (known) high-order discretization schemes such as Discontinuous Galerkin Finite Elements, and we present a new discretization method for the Navier-Stokes equations in the framework of Hybrid Mixed Methods. The newly developed method is a combination of well-established methods for the diffusive (elliptic) and the convective (hyperbolic) part. Another aspect of numerical computation is the following: The practitioner's interest is often not in the quality of a numerical solution per se, but in a few derived quantities J_i, the so-called target functionals. The error in these quantities can be approximated by an adjoint procedure, meaning that one solves an additional, linear equation to obtain a weight z that relates the residual of the discrete equations to the error. The resulting expression can be used for grid adaptation, meaning to optimize the given underlying grid with respect to the accuracy of the target functional. A property of a discretization that is very important in this context, is adjoint consistency. This property ensures that the discretization can also be used to compute an approximation z_h to z. We therefore analyze existing Discontinuous Galerkin methods and the newly developed Hybrid Mixed method with respect to this property, and show that they are in fact adjoint consistent. The adjoint idea is in principle based on a first order Taylor expansion. It is evident that this requires a high degree of smoothness, which is usually not available in solutions to aerodynamic flows. To address that problem, we present a new mathematical framework for the investigation of the adjoint methodology in the case where the flow is non-smooth, and we give numerical evidence on how to actually compute the adjoint.
机译:基于计算机的建模在技术和工业用途中的重要性显而易见。尤其是,空气动力学行业对准确计算空气动力学流量的可靠且健壮的方法有着极大的兴趣。通常用椭圆-双曲线型偏微分方程来描述这些流动,并且由于通常不可能精确地求解这些方程,因此必须依靠数值方法。工业最新代码通常基于低阶近似,这意味着基础算法与偏微分方程的一致性较低。这导致非常鲁棒的方法变得非常有效,因此非常受欢迎。但是,假设具有更高阶的一致性的方法可以胜过前面提到的方法。因此,我们在这项工作(已知的)高阶离散化方案(如间断Galerkin有限元)中进行了研究,并在混合混合方法的框架内为Navier-Stokes方程提出了一种新的离散化方法。新开发的方法是针对扩散(椭圆)和对流(双曲线)部分的成熟方法的组合。数值计算的另一个方面如下:从业者的兴趣通常不在于数值解本身的质量,而在于几个导出量J_i,即所谓的目标函数。这些量的误差可以通过伴随过程来近似,这意味着人们可以求解一个附加的线性方程以获得权重z,该权重将离散方程的残差与误差相关联。结果表达式可用于网​​格调整,这意味着相对于目标功能的准确性来优化给定的基础网格。在这种情况下,离散化的一个特性是伴随一致性。此属性确保离散化也可以用于计算z到z的近似值。因此,我们针对此特性分析了现有的间断Galerkin方法和新近开发的混合混合方法,并证明它们实际上是伴随一致的。伴随思想原则上是基于一阶泰勒展开式。显然,这需要高度的平滑度,这在解决空气动力学流动时通常不可用。为解决该问题,我们提出了一种新的数学框架,用于研究流量不平滑的情况下的伴随方法,并提供了有关如何实际计算伴随的数值证据。

著录项

  • 作者

    Schütz Jochen;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号