首页> 外文OA文献 >Messung von Diffusionskoeffizienten in hochschmelzenden, metallischen Flüssigkeiten mit Scherzellentechnik8
【2h】

Messung von Diffusionskoeffizienten in hochschmelzenden, metallischen Flüssigkeiten mit Scherzellentechnik8

机译:使用剪切池技术测量难熔金属液体中的扩散系数8

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The determination of inter- and self-diffusion coefficients of refractory sample systems requires the usage of a new type of crucible materials, measuring installations and -methods. For the measurements within the scope of this work, the shear-cell method was combined with an isothermal furnace, which was also developed for the use in weightlessness. The shear-cell furnace built by the company Astrium (Airbus) and the Technical University of Freiberg was used in order to establish its characteristics regarding function and temperature distribution as well as for the measurement of the diffusion coefficient. In order to achieve this, a series of changes regarding its overall structure had to be implemented. During the calibration measurements, temperatures of 1500°C within the shear-cell could repeatedly be achieved. The isothermal area along the sample was of 90 mm; the temperature gradient along the heating zone was a maximum of 2 K. The furnace itself can be heated up to temperatures of 1650°C. The heating parameters for 5 different diffusion temperatures were determined in order to guarantee an isothermal area of ±1K along the capillaries. This was necessary in order to compensate heat loss along the shear cell and in preparation for each diffusion test series with the graphite shear cell. This experiment differs from other already existing shear-cells due to the high amount of measuring points, the length and the amount of samples as well as the extreme temperature stability of the experiment buildup. Because the construction can be tilted, the melting column can be aligned with gravitational acceleration, which favours the creation of a stable density layer within the melting pillar. The fusing of the samples in a horizontal position avoids segregation effects. The isothermal area minimizes the transport of material within the melt due to convection. Pre-stressed repositories are balancing volume expansion or shrinkage of the samples. This ensures a complete filling of the capillaries and prevents free surfaces on the capillary walls or the formation of bubbles within the melt. The shear processes at the beginning and at the end of the diffusion process allow a precise determination of the soak time and prevent the influence of solidification phenomena on the concentration profile. In this work, the inter-diffusion and self-diffusion coefficients were measured on Al-Cu. To achieve this, several shear cell experiments were conducted under identical process conditions and with varying concentration gradients around the average concentration of Al$_{87,5}$Cu$_{12,5}$ in the graphite shear-cell. CT analysis and the determination of concentration profiles with AAS were used for the evaluation of the results. The analysis with different measurement techniques reduces the amount of errors. The newly determined inter-diffusion coefficients differ from previously published results. The analysis of the concentration profiles were performed with x-ray tomography and chemical AAS analysis. The calculated self-diffusion and inter-diffusion coefficients match the assumed 10% measurement error. The minor deviations of the measured results when using two different measuring processes over a high amount of experiments prove the reliability and the precision of the shear cell method that was used in this work. In the context of another dissertation at the Institute of Materials Physics in Space, shear- cell experiments to measure the inter-diffusion on the system AgCu and the ternary AlCuAg alloy were carried out parallel to this work. Because of the high isothermal area and the increased amount of sample segments that could be analysed, the shear cell method presented in this work represents an adequate measurement method for sample systems with limited x-ray contrast. To date, the mutual influence of the alloying components as well as the correct choice of evaluation methods render the collection of precise measurement results on ternary sample systems rather difficult. Four shear-cell measurements around the area of the AlCuAg-eutectic were carried out to complete and verify the results obtained. Despite the lack of process observations, it is clear that the shear-cell, in combination with an isothermal furnace, provides reproducible results on ternary alloys, which also correlate with the results of neutron radiography, within the limit of tolerance regarding measurement and analysis/evaluation errors. Alongside the measurements described on the Al-Cu, Ag-Cu and AlCuAg systems, shear-cell experiments to determine the inter-diffusion coefficient on varying Al-Ni systems were also carried within the scope of this work. Part of this work focuses on the analyses of chemical compatibility between potential crucible materials for the production of a high temperature shear cell and high-melting Al-Ni melts. The analyses resulted in the production of a shear-cell made of BN, with 35% ZrO$_2$, which combines the characteristics of the graphite cell with the chemical stability of BN. The first shear cell experiments include measurements around Al$_{71,02}$Ni$_{28,98}$. In an additional experiment, measurements to determine the inter-diffusion coefficient were also carried out on Al$_{25}$Ni$_{75}$. With this boron nitride cell, it was possible for the very first time to perform inter-diffusion shear cell experiments on high-melting Al-Ni at process temperatures above 1400°C for the very first time.
机译:确定耐火样品系统的相互扩散系数和自我扩散系数需要使用新型的坩埚材料,测量装置和方法。为了在此工作范围内进行测量,将剪切池方法与等温炉相结合,等温炉也被开发用于失重。为了确定其在功能和温度分布以及扩散系数的测量方面的特性,使用了由Astrium(Airbus)公司和弗赖贝格技术大学制造的剪切室炉。为了实现这一点,必须对其整体结构进行一系列更改。在校准测量过程中,剪切单元内的温度可以重复达到1500°C。样品的等温区域为90毫米;沿加热区的温度梯度最大为2K。炉子本身可以加热到1650°C。确定了5种不同扩散温度的加热参数,以确保沿着毛细管的等温区域为±1K。这是必要的,以便补偿沿剪切池的热量损失,并为使用石墨剪切池的每个扩散测试系列做准备。由于大量的测量点,样品的长度和数量以及实验集的极端温度稳定性,该实验与其他已经存在的剪切单元不同。因为可以倾斜构造,所以熔融塔可以与重力加速度对齐,这有利于在熔融塔内创建稳定的密度层。将样品融合在水平位置可避免偏析的影响。等温区域使由于对流的材料在熔体中的传输最小化。预应力储存库正在平衡样品的体积膨胀或收缩。这样可确保完全填充毛细管,并防止毛细管壁上的自由表面或熔体中形成气泡。扩散过程开始和结束时的剪切过程可精确确定均热时间,并防止凝固现象对浓度分布的影响。在这项工作中,在Al-Cu上测量了相互扩散系数和自扩散系数。为了实现这一点,在相同的工艺条件下,以不同浓度梯度围绕石墨剪切池中Al $ _ {87,5} $ Cu $ _ {12,5} $的平均浓度进行了几次剪切池实验。 CT分析和AAS浓度分布测定用于评估结果。使用不同的测量技术进行分析可以减少错误数量。新确定的相互扩散系数与先前公布的结果不同。浓度分布图的分析通过X射线断层扫描和化学AAS分析进行。计算出的自扩散系数和互扩散系数与假定的10%测量误差相匹配。在大量实验中使用两种不同的测量过程时,测量结果的微小偏差证明了在这项工作中使用的剪切单元法的可靠性和准确性。在空间材料物理研究所的另一篇论文的背景下,与此工作平行进行了剪切单元实验,以测量AgCu和三元AlCuAg合金在系统中的相互扩散。由于具有较高的等温面积,并且可以分析的样品片段数量增加,因此本文中介绍的剪切池方法代表了一种适用于X射线对比度有限的样品系统的适当测量方法。迄今为止,合金成分的相互影响以及正确选择评估方法使在三元样品系统上收集精确的测量结果变得相当困难。在AlCuAg共晶区域周围进行了四个剪切单元测量,以完成并验证所获得的结果。尽管缺乏工艺观察结果,但很明显,剪切池与等温炉相结合,可在三元合金上提供可重现的结果,并且与中子射线照相的结果相关联,且在有关测量和分析的公差范围内/评估错误。除了在Al-Cu,Ag-Cu和AlCuAg系统上描述的测量方法外,在此工作范围内还进行了剪切单元实验,以确定在各种Al-Ni系统上的相互扩散系数。这项工作的一部分重点在于分析用于生产高温剪切池的潜在坩埚材料与高熔点Al-Ni熔体之间的化学相容性。分析结果产生了含35%ZrO $ _2 $的BN剪切池。,它结合了石墨电池的特性和BN的化学稳​​定性。第一个剪切单元实验包括在Al $ _ {71,02} $ Ni $ _ {28,98} $附近的测量。在另外的实验中,还对Al $ _ {25} $ Ni $ _ {75} $进行了测定以确定相互扩散系数的测量。有了这种氮化硼电池,这是第一次有可能第一次在高于1400°C的工艺温度下对高熔点的Al-Ni进行扩散间剪切电池实验。

著录项

  • 作者

    Heuskin David;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号