首页> 外文OA文献 >Design and self-management of wireless networked systems with model-driven optimization
【2h】

Design and self-management of wireless networked systems with model-driven optimization

机译:具有模型驱动的优化的无线网络系统的设计和自我管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless networked systems are becoming increasingly popular, with a growing number of deployments and diverse applications. This leads to increasing complexity of these systems, as due to the shared nature of the wireless medium the amount of network resources available is constantly decreasing. These networks have to operate in challenging and dynamic conditions, and accommodate diverse and often contradictory objectives stated by multiple stakeholders. Often wireless networks are integral parts of larger systems, like the Internet, and need to utilize existing imperfect software and hardware components, which results in additional heterogeneity and implementation challenges. All this makes design, planning, and run-time management of wireless networked systems a demanding task. In this thesis we address some of these challenges through a model-driven optimization methodology, which is formalized using category theory. We state a meta-optimization problem based on requirements of network players, operational context, applicable models that consider for both parameter- and component-based solutions. In order to simplify the problem we propose applying the mapping functions of abstraction, transformation, and decomposition, while considering the aspects of information loss or disruption in the problem formulation. We show on selected case studies how the proposed methodology can be employed at both static (design, planning) and dynamic (run-time management) stages of a network's life-cycle. In particular, we demonstrate that this methodology is effective for a detailed design and implementation of a self-optimizing system for wireless home networks, and optimization of protocol stacks for wireless sensor systems with an ontology-driven framework. Since modeling is a crucial aspect of network optimization, we also propose and investigate several types of models in this work. Directed labeled graphs and their network motifs are used for identification of the networking context in the CSMA/CA based networks. We show how spatial network structure affects characteristics of these graphs, such as node degree distributions and occurrence patterns of small network motifs. We also propose a novel graph edge labeling based on clustered correlation coefficients that capture network dynamics imposed by tunable network parameters. We argue that this robust metric can lead to faster network optimization in a variety of operational conditions. We also consider modeling of the temporal context. In particular, based on power spectrum measurements we obtain online hidden semi-Markov models of network activity patterns and apply them as part of a dynamic spectrum access scheme. Additionally, we exploit metaheuristic mechanisms for cross-layer optimization and network planning that aim at robustness, performance maximization and optimizability of the system. We investigate how the size and the structure of the state space, the availability of valid models and utility functions influence the convergence of these methods. Our results show that for network problems it is often better to invest in careful problem formulation and long execution of simple metaheuristics rather than going for their custom modifications besides the simplest ones. The proposed approaches have being extensively prototyped or proven through simulation based experimentation. In particular we have focused on small-scale wireless networked systems that utilize IEEE 802.11 radio interfaces and wireless sensor networks. We have also experimented with the WARP software defined radio platforms.
机译:随着越来越多的部署和多样化的应用,无线联网系统变得越来越流行。这导致这些系统的复杂性增加,因为由于无线介质的共享性质,可用网络资源的数量不断减少。这些网络必须在具有挑战性和动态的条件下运行,并适应多个利益相关者提出的多样化且通常相互矛盾的目标。通常,无线网络是大型系统(如Internet)的组成部分,并且需要利用现有的不完善的软件和硬件组件,这会导致其他异构性和实施挑战。所有这些使无线网络系统的设计,规划和运行时管理成为一项艰巨的任务。在本文中,我们通过使用类别理论形式化的模型驱动优化方法来应对其中的一些挑战。我们根据网络参与者的要求,操作环境,适用于基于参数和基于组件的解决方案的适用模型,提出了元优化问题。为了简化问题,我们建议应用抽象,转换和分解的映射功能,同时在问题表述中考虑信息丢失或中断的方面。我们将在选定的案例研究中展示如何在网络生命周期的静态(设计,规划)和动态(运行时管理)阶段采用所提出的方法。特别是,我们证明了这种方法对于无线家庭网络的自优化系统的详细设计和实现以及具有本体驱动框架的无线传感器系统协议栈的优化是有效的。由于建模是网络优化的关键方面,因此我们在这项工作中也提出并研究了几种类型的模型。有向标记图及其网络主题用于识别基于CSMA / CA的网络中的网络环境。我们展示了空间网络结构如何影响这些图的特性,例如节点度分布和小型网络图案的发生方式。我们还提出了一种基于聚类相关系数的新颖图形边缘标记,该系数捕获了可调网络参数所强加的网络动态。我们认为,这种健壮的指标可以在各种操作条件下加快网络优化速度。我们还考虑时间上下文的建模。特别是,基于功率谱测量,我们获得了网络活动模式的在线隐藏半马尔可夫模型,并将其作为动态频谱访问方案的一部分来应用。此外,我们利用元启发式机制进行跨层优化和网络规划,以实现系统的鲁棒性,性能最大化和可优化性。我们研究状态空间的大小和结构,有效模型的可用性和效用函数如何影响这些方法的收敛。我们的结果表明,对于网络问题,通常最好投资仔细地解决问题并长时间执行简单的元启发式方法,而不是对最简单的方法之外的方法进行自定义修改。所提出的方法已通过基于模拟的实验得到了广泛的原型或证明。特别是,我们专注于利用IEEE 802.11无线电接口和无线传感器网络的小型无线联网系统。我们还试验了WARP软件定义的无线电平台。

著录项

  • 作者

    Meshkova Elena;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号