首页> 外文OA文献 >Parametric multi-block grid generation and application to adaptive flow simulations
【2h】

Parametric multi-block grid generation and application to adaptive flow simulations

机译:参数化多块网格生成及其在自适应流模拟中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many difficulties encountered in the numerical solution of partial differential equations emanate from the approximate, polygonal based geometry that usually underlies the philosophy of finite element or finite volume methods. This is especially true for adaptive codes. Here, for instance, one faces the problem that once a standard polygonal grid has been constructed, subsequent grid refinement requires information from the exact geometry model which istypically unaccessible by the PDE solver. Furthermore, in the case of moving grids sophisticated and computationally expensive remeshing algorithms have to be developed. In this thesis we address these problems with a new block-structured grid generation concept. The central idea is to describe the geometry of the physical domain by parametric mappings from which consistent discretizations at arbitrary level of resolution can be generated simply by function evaluation. The mappings themselves can ideally be represented by only a small number of design parameters thus reducing the complexity of the grid generation and deformation task to the genuine complexity of the geometric problem instead to the complexity of the discretization. As standard representation for the grid mappings we use B-spline tensor products, however, other types of mappings are admissible. In order to retain sufficient flexibility the grid mappings are bundled into a multiblock structure. This allows us to combine techniques from classical structured grid generation and computer aided geometric design to build a fully functional grid generation system. These methods include, in particular, fast interpolation, approximation and fairing algorithms for tensor product B-splines, algebraic grid generation based on transfinite interpolation, and elliptic grid generation with harmonicmappings. A central task in the implementation of a grid generation system is the design of a data structure that can serve both as interface to the PDE solver and as flexible tool for the modeling of grids. We present the implementation of such a framework based on the object-oriented programming paradigm. The information about the block connectivity and the geometry are separated as far as possible. Thus our method allows for widely different ways of describing the geometry. In particular it can handle both parametric and discrete grids. In view of applications to aerodynamics, where the Navier-Stokes equations have to be solved for high Reynolds numbers, specialized methods to generate high-quality boundary layer grids have been developed. These are based on the successive generation of curvature dependent offset curves and can roughly be counted among the class of hyperbolic methods. This method is applied to a simple, but realistic wing configuration. The new grid generation system has been integrated into the adaptive flow solver QUADFLOW which aims at large scale simulations of compressible fluid flow and fluid-structure interaction. This solver employs an unstructured finite volume scheme for the time integration and a multiresolution analysis in order to construct locally refined grids. These ingredients have to be carefully coordinated with the mesh generation strategy. We analyze which requirements this solution strategy poses to the grid generator. In particular we derive the so-called geometric conservation laws. These are consistency conditions which stem from the simple supposition that a constant, homogeneous flow field should be exactly reproduced by the numerical scheme even if the grid changes due to deformations induced by moving boundaries or due to grid refinement. We present a general guideline how to fulfill these conditions in the parametric setting and present its concrete realization for B-spline mappings. Finally we summarize the overall structure of the QUADFLOW-solver and present several numerical examples, proving the practicability of the new concept and demonstrating some of its features.
机译:在偏微分方程数值解中遇到的许多困难源于通常基于有限元法或有限体积法原理的基于多边形的近似几何。对于自适应代码尤其如此。例如,这里面临的问题是,一旦构建了标准的多边形网格,随后的网格细化就需要来自精确几何模型的信息,而这些信息通常是PDE求解器无法访问的。此外,在移动网格的情况下,必须开发复杂且计算上昂贵的重划算法。在本文中,我们使用一种新的块结构网格生成概念来解决这些问题。中心思想是通过参数映射来描述物理域的几何形状,从中可以简单地通过函数评估来生成任意分辨率级别的一致离散。理想情况下,映射本身可以仅由少量设计参数表示,从而将网格生成和变形任务的复杂度降低到几何问题的真正复杂度,而不是离散化的复杂度。作为网格映射的标准表示,我们使用B样条张量积,但是其他类型的映射也是允许的。为了保持足够的灵活性,将网格映射捆绑为一个多块结构。这使我们能够结合经典结构化网格生成技术和计算机辅助几何设计技术来构建功能齐全的网格生成系统。这些方法尤其包括用于张量积B样条的快速插值,逼近和整流算法,基于超限插值的代数网格生成以及带有谐波映射的椭圆网格生成。网格生成系统的实现中的中心任务是数据结构的设计,该数据结构既可以用作PDE求解器的接口,又可以用作网格建模的灵活工具。我们介绍了基于面向对象编程范例的这种框架的实现。有关块连接性和几何形状的信息应尽可能分开。因此,我们的方法允许使用多种不同的方式描述几何。特别是它可以处理参数化网格和离散网格。考虑到空气动力学的应用,对于高雷诺数必须解决Navier-Stokes方程,已经开发了生成高质量边界层网格的专用方法。这些基于连续生成的与曲率相关的偏移曲线,并且可以在双曲线方法的类别中粗略地计数。该方法适用于简单但现实的机翼配置。新的网格生成系统已集成到自适应流求解器QUADFLOW中,该流求解器旨在对可压缩流体流和流体-结构相互作用进行大规模仿真。该求解器采用非结构化有限体积方案进行时间积分和多分辨率分析,以便构建局部精炼的网格。这些成分必须与网格生成策略仔细协调。我们分析了此解决方案策略对网格生成器提出的要求。特别地,我们推导了所谓的几何守恒定律。这些是一致性条件,源于简单的假设,即即使网格由于移动边界引起的变形或网格细化而发生变化,也应通过数值方案精确地再现恒定,均匀的流场。我们提出了如何在参数设置中满足这些条件的一般准则,并提出了其对于B样条曲线映射的具体实现。最后,我们总结了QUADFLOW求解器的整体结构,并提供了一些数值示例,证明了新概念的实用性并展示了其某些功能。

著录项

  • 作者

    Lamby Philipp;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号