首页> 外文OA文献 >Cognitive resource manager framework for optimal resource allocation
【2h】

Cognitive resource manager framework for optimal resource allocation

机译:用于优化资源分配的认知资源管理器框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless networks are under constant pressure to provide ever higher data rates to increasing numbers of users with greater reliability. At the same time they are becoming more complex and challenging to manage. Great efforts are being done to make the wireless devices and networks adaptive and self-optimizing in order to more efficiently use the resources and deliver good quality services. High spectral efficiency, environmental adaptivity, user-awareness and energy efficiency are highly desired features in the future networks. It has also become important to support these goals at all OSI-layers in a cross-layer manner. Making the wireless systems smarter has been a matter of research under the cognitive radio (CR) paradigm for ten years now. While CR is a very interdisciplinary and wide topic, including dynamic spectrum access and policies, flexible system architectures, learning, context awareness, cooperative networking, etc., most of the contributions so far have been limited to novel spectrum access approaches and spectrum sensing techniques. Mitola's original vision on context-sensitive smart radios was a precursor, but the current work has been still lacking precise proposal beyond high-level arguments. In this thesis we study the cognitive radios from a system point of view focusing closely on architectures, techniques and algorithms that can enable intelligent operations. We propose a modular cognitive resource manager (CRM) framework, which can facilitate a development of complex control and optimization techniques for resource management in wireless networks on diverse radio environments and problem scenarios. This work contributes towards bringing cognitive radio a step closer to practical implementation by conducting both theoretical and experimental studies of suitable optimization methods and algorithms under the proposed CRM framework. We study in this thesis automatic and adaptive system configuration mechanisms for different resource allocation problems. As most of the problems have heavy optimization phase and often exhibit complex and non-linear parameter dependencies we have studied the use of heuristic algorithms. Genetic algorithm optimizer for PHY and MAC parameter selection has been developed and tested. For autonomous channel allocation we have studied two different classes of algorithms. An approximative coloring algorithm and a corresponding protocol were designed and successfully implemented to minimize the interference in wireless local area networks. An evolutionary game theory method based on balls and bins problem was subsequently developed to jointly address channel allocation and load balancing problems. Finally, the work in this thesis concludes by applying Minority Games to medium access control problem in order to enable self-organization without information exchange overhead.
机译:无线网络承受着不断的压力,需要以更高的可靠性为越来越多的用户提供更高的数据速率。同时,它们变得越来越复杂,并且在管理方面具有挑战性。为了使无线设备和网络具有自适应性和自优化性,正在付出巨大的努力,以便更有效地利用资源并提供高质量的服务。高频谱效率,环境适应性,用户意识和能源效率是未来网络中非常需要的功能。以跨层方式在所有OSI层上支持这些目标也变得很重要。十年来,在认知无线电(CR)范式下,使无线系统更智能一直是研究的问题。尽管CR是一个非常跨学科且广泛的主题,包括动态频谱访问和策略,灵活的系统架构,学习,上下文感知,合作网络等,但迄今为止,大多数贡献仅限于新颖的频谱访问方法和频谱感测技术。 Mitola最初对上下文相关的智能无线电的构想是一个先驱,但是当前的工作仍然缺少高级论点之外的精确建议。在本文中,我们从系统的角度研究认知无线电,重点关注可以实现智能操作的体系结构,技术和算法。我们提出了一个模块化的认知资源管理器(CRM)框架,该框架可以促进在各种无线电环境和问题场景下的无线网络中资源管理的复杂控制和优化技术的开发。这项工作通过在建议的CRM框架下对合适的优化方法和算法进行理论和实验研究,为使认知无线电技术更接近实际应用做出了贡献。本文研究了针对不同资源分配问题的自动和自适应系统配置机制。由于大多数问题都具有繁重的优化阶段,并且常常表现出复杂的非线性参数依赖性,因此我们研究了启发式算法的使用。已经开发并测试了用于PHY和MAC参数选择的遗传算法优化器。对于自主信道分配,我们研究了两种不同类型的算法。设计并成功实现了近似着色算法和相应的协议,以最大程度地减少无线局域网中的干扰。随后开发了一种基于球和箱问题的进化博弈论方法,以共同解决信道分配和负载平衡问题。最后,本文的工作是通过将少数派游戏应用于媒介访问控制问题而得出的,以实现自组织而无需信息交换开销。

著录项

  • 作者

    Petrova Marina;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号