首页> 外文OA文献 >Vorhersage von Spanbruch bei der Zerspanung mit geometrisch bestimmter Schneide mit Hilfe schädigungsmechanischer Ansätze
【2h】

Vorhersage von Spanbruch bei der Zerspanung mit geometrisch bestimmter Schneide mit Hilfe schädigungsmechanischer Ansätze

机译:使用损伤机械方法预测在几何定义的切削刃加工过程中的切屑破裂

摘要

The chip shape – besides the cutting forces, tool wear and surface roughness – is one of the most commonly used criteria for the evaluation of the machinability. The importance of the chip shape can be explained by its strong influence on process reliability. In consequence an automation of cutting operations is only possible for fa-vourable chip shapes. For longitudinal turning as well as for other processes with con-tinuous cutting edge contact, periodic chip breakage is necessary to avoid unfavourable ribbon or thread chips. Chip breakage is caused by a variety of mutually dependant in-fluencing factors related to workpiece, tool or process parameters. A possibility to predict chip breakage is to model these influences. The three-dimensional Finite Element Method (3D-FEM) offers the possibility to take the complex chip breaker geometries of the cutting tool into account. For FE-modelling of chip breakage, a criterion is needed, capable of calculating material failure at the position of chip breakage. However, the definition of such a criterion requires research into the thermo-mechanical loads that cause chip breakage. Accordingly, this thesis aims to predict chip breakage using a damage model, which is based on the mechanical and thermal loads in the chip. It contributes to a more funda-mental understanding of cutting processes with geometrically defined cutting edges in general and contributes the prediction of chip breakage in longitudinal turning of AISI 1045. A model-based approach was chosen in order to calculate thermo-mechanical loads. Based on these loads, an adequate damage model could be defined. The localisation of chip breakage and the dominant failure mechanisms in the chip breakage zone were determined in empirical investigations of the cutting process. By applying a sensitivity analysis, the strongest tool- and process-related influences that cause chip breakage were identified and different process conditions for finishing and roughing tool geome-tries were determined. The process conditions included parameter sets with controlled chip breakage as well as sets with unfavourable chip shapes. For the parameter sets with controlled chip breakage, the time and position of material failure were identified using a high speed filming device. The analysis of the chip fracture faces revealed duc-tile material failure as the dominant failure mechanism. Different damage models for this type of material failure were presented and discussed regarding their potential and ap-plicability to predict chip breakage. The decision between the use of existing damage models and the definition of a new damage model was made on the basis of the thermo-mechanical loads in the chip breakage position. An analytic model was then de-veloped to transform the distribution of stress in a blocked chip to a status of plane stress. The maximum tensile stresses depending on the cutting conditions and tool ge-ometry were calculated based on this model. The model correlated with the real borders of controlled chip breakage in a wide range of cuttings depths and feed rates. Only for small cutting depths and large feed rates a significant difference compared to real chip breakage was identified. This deviation is caused by the complex three-dimensional chip flow under these process conditions. It is assumed that these cutting conditions require three-dimensional modelling of the chip flow. Consequently the chip formation, chip flow and expansion of the chip were modelled three-dimensionally using the Finite Element Method (FEM). In this model the current loads as well as their time-dependent developments could be determined. The evalua-tion of the existing damage criteria showed that none of the presented criteria offer suf-ficient reliability for the prediction of chip breakage. Therefore an independent damage criterion for chip breakage prediction was developed based on a damage model of Johnson and Cook. This criterion calculated the residual deformability of the material depending on the tolerated temperatures, strain rates and stress conditions. The calcu-lated damage value lead to a reduction of the material strength and to a local softening in the chip. The implementation of this damage criterion in the FEM-model enabled three-dimensional simulation of chip breakage. The model correlated well with the chip flow and breakage as well as with the empirically determined cutting forces and tem-peratures on the lower surface of the chip. The FEM-model developed enables system-atic investigation of the influence of tool geometries and cutting conditions on chip breakage for turning operations of AISI 1045.
机译:除切削力,刀具磨损和表面粗糙度外,切屑形状是评估切削性能的最常用标准之一。芯片形状的重要性可以通过其对工艺可靠性的强烈影响来解释。因此,仅对于可加工的切屑形状,才可以自动执行切割操作。对于纵向车削以及具有连续切削刃接触的其他过程,必须定期断屑,以避免不利的色带或线屑。断屑是由与工件,工具或工艺参数有关的各种相互影响的因素引起的。预测断屑的可能性是对这些影响进行建模。三维有限元方法(3D-FEM)可以考虑切削刀具的复杂断屑槽几何形状。对于断屑的有限元建模,需要一个能够在断屑位置计算材料破坏的准则。然而,这种标准的定义要求对引起切屑破裂的热机械载荷进行研究。因此,本论文旨在使用基于芯片中的机械和热负荷的损伤模型来预测切屑的破裂。一般而言,它有助于从根本上理解带有几何定义的切削刃的切削过程,并有助于预测AISI 1045纵向车削中的切屑破裂。选择了基于模型的方法来计算热机械载荷。基于这些载荷,可以定义适当的损伤模型。在对切削过程的实证研究中确定了断屑的定位和断屑区的主要破坏机理。通过进行敏感性分析,确定了引起切屑破裂的最强的刀具和工艺相关影响,并确定了精加工和粗加工刀具几何尺寸的不同工艺条件。工艺条件包括具有受控切屑断裂的参数集以及具有不利切屑形状的参数集。对于控制断屑的参数组,使用高速成膜装置确定材料失效的时间和位置。切屑断裂面的分析表明,小块材料失效是主要的失效机理。提出并讨论了针对此类材料故障的不同损伤模型,这些模型涉及其潜在可能性和适用于预测切屑破损的适用性。根据断屑位置的热机械载荷,在使用现有损伤模型和定义新损伤模型之间做出决定。然后开发一个解析模型,以将阻塞芯片中的应力分布转换为平面应力状态。根据该模型计算出取决于切削条件和刀具几何尺寸的最大拉应力。该模型与在广泛的切削深度和进给速度下受控切屑断裂的真实边界相关。仅对于较小的切削深度和较大的进给速度,才发现与实际切屑断裂相比有显着差异。在这些工艺条件下,这种偏差是由复杂的三维切屑流引起的。假设这些切削条件需要对切屑流进行三维建模。因此,使用有限元方法(FEM)对三维切屑形成,切屑流动和切屑膨胀进行了三维建模。在此模型中,可以确定当前负载及其随时间的变化。对现有损伤准则的评估表明,所提出的准则均不能为切屑断裂的预测提供足够的可靠性。因此,基于约翰逊和库克的损伤模型,开发了一种用于断屑预测的独立损伤判据。该标准根据耐受温度,应变速率和应力条件计算出材料的残余变形能力。计算得出的损伤值导致材料强度降低并导致切屑局部软化。在FEM模型中实施此损坏标准可对断屑进行三维仿真。该模型与切屑流动和断裂以及根据经验确定的切屑下表面上的切削力和温度密切相关。通过开发的FEM模型,可以对AISI 1045车削操作中的刀具几何形状和切削条件对切屑断裂的影响进行系统研究。

著录项

  • 作者

    Essig Christoph Alexander;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号