首页> 外文OA文献 >An efficient full-potential linearized augmented plane wave electronic structure method for charge and spin transport through realistic nanoferronic junctions
【2h】

An efficient full-potential linearized augmented plane wave electronic structure method for charge and spin transport through realistic nanoferronic junctions

机译:一种有效的全势线性化增强平面波电子结构方法,用于通过现实的纳米铁结进行电荷和自旋传输

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two extensions of the FLAPW electronic structure method are presented, which allow the efficient computation of charge and spin transport properties in realistic nanoferronic materials and nanostructures. First, an order-N implementation of the FLAPW method is presented, which allows the efficient calculation of electronic transport in magnetic tunnel junctions (MTJs) and metallic spin-valves. The method described scales linearly with system size in contrast to the cubic scaling of the computational burden of the standard FLAPW method. The implementation is based on the embedding method, which allows to divide the system into atomic layers, which are then coupled by the embedding potential. Thus, this method is optimally suited for the description of open systems, such as surfaces and tunnel junctions. The order-N implementation allows to exploit the high precision of the FLAPW method at minimal computational cost. The implementation was validated for structural and magnetic properties and charge and spin transport. The method is applied to investigate charge and spin transport and the spin transfer torque in Co/Cu/Co and Fe/Ag/Fe spin valves as well as in Fe/MgO/Fe MTJs. Results are compared to models and experimental data. In addition to system size, difficulties to perform the numerical integration of Fermi sea and Fermi surface integrals can also complicate the computation of charge and spin transport properties. This affects e.g. the anomalous Hall and spin Hall conductivities. In these cases Wannier interpolation provides an efficient framework to perform the numerical k-point integrations. The implementation of maximally localized Wannier functions within the FLAPW method is described and validated for bulk, film and one-dimensional systems with and without spin-orbit coupling. Especially, the ferroelectric polarization of several ferroelectric and multiferroic materials is calculated and discussed based on the Wannier picture of ferroelectric polarization.
机译:提出了FLAPW电子结构方法的两个扩展,它们允许在实际的纳米铁材料和纳米结构中高效地计算电荷和自旋输运性质。首先,介绍了FLAPW方法的N阶实现,它可以高效地计算磁性隧道结(MTJ)和金属自旋阀中的电子传输。与标准FLAPW方法的计算负担的三次缩放相比,所描述的方法随系统大小线性缩放。该实现基于嵌入方法,该方法允许将系统划分为原子层,然后通过嵌入电位将其耦合。因此,此方法最适合用于描述开放系统,例如表面和隧道结。 N阶实现允许以最小的计算成本利用FLAPW方法的高精度。该实现已针对结构和磁性能以及电荷和自旋传输进行了验证。该方法适用于研究Co / Cu / Co和Fe / Ag / Fe自旋阀以及Fe / MgO / Fe MTJ中的电荷和自旋输运以及自旋传递扭矩。将结果与模型和实验数据进行比较。除了系统尺寸之外,难以进行费米海和费米表面积分的数值积分还可能使电荷和自旋输运性质的计算复杂化。这会影响异常霍尔和自旋霍尔电导率。在这些情况下,Wannier插值提供了执行数字k点积分的有效框架。描述并验证了FLAPW方法中最大局部Wannier函数的实现,并针对带有或不带有自旋轨道耦合的体,膜和一维系统进行了验证。特别是,根据Wannier铁电极化图计算并讨论了几种铁电和多铁性材料的铁电极化。

著录项

  • 作者

    Freimuth Frank;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号